visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2016-11-10 16:00 
일시 Nov. 10th(Thu) 4 p.m. 
장소 E6-2. #1323(1st fl.) 
연사 Prof. Min Seok Jang, Electrical Engineering, KAIST 

Low Dimensional Active Plasmonics and Electron Optics in Graphene

 

Nov. 10th(Thu) 4 p.m., E6-2. #1323(1st fl.)
Prof. Min Seok Jang, Electrical Engineering, KAIST

 

 

The field of plasmonics has been attracting wide interest because it has provided routes to guide and localize light at nanoscales by utilizing metals as its major building block. Meanwhile, graphene, a two-dimensional lattice of carbon atoms, has been regarded as a candidate material for future electronic applications owing to its remarkably high carrier mobility and superior thermal properties. Both research fields have been growing rapidly, but quite independently. However, a closer look reveals that there are actually numerous similarities between them, and it is possible to extract useful applications from these analogies. Even more interestingly, these research fields are recently overlapping to create a new field of research, namely graphene plasmonics, which offers a unique platform to dynamically modulate light with unprecedented spatial and temporal resolutions.

 

In this talk, I will present a few examples of these intertwined topics. First, I will introduce “rainbow trapping” structures, broadband plasmonic slow light systems composed of single or double negative materials, and clarify the mode-conversion mechanism and the light-trapping performance by analyzing the dispersion relation. I will then show that electrons in graphene exhibit photon-like dynamics and how this analogy between photonics and electronics can inspire to solve an interesting problem of electron backscattering in graphene field effect transistors. Finally, I will present how the surface plasmons in graphene can be harnessed to create infrared metasurfaces that have tunable optical properties including extreme light-matter interaction and macroscopic modulation of light absorption and thermal emission.

 

Contact: Contact: Min-kyo Seo, Physics Dept. (T.2517)

 

번호 날짜 장소 제목
251 2019-08-16 14:00  E6 Room(#1323)  Multiferroic and Magnetoelectric Effects by Tailoring Interfacial Chemistry and Physics in Correlated Oxides file
250 2019-08-14 16:00  Rm. 1323, E6  Quantum Optics, at the heart of quantum metrology and quantum information file
249 2019-08-06 16:00  E6 Room(#1323)  Visualization of in-plane piezoresponse vector fields file
248 2019-08-01 14:00  E6 Room(#1323)  Low-density Superconductivity in SrTiO3 Probed by Planar Tunneling Spectroscopy file
247 2019-07-31 16:00  E6-2, #1323  Features of ballistic superconducting graphene file
246 2019-07-30 16:00  #1323, E6-2  Dirac fermions and flat bands in correlated kagome metals file
245 2019-07-25 16:00  E6-2, #1323  Band topology of twisted bilayer graphene file
244 2019-07-21 12:00  E6-2,# 5318  Challenges and Opportunities in Theoretical Particle Physics 2019 file
243 2019-07-16 16:00  Rm. 1323 (E6-2)  2019 Physics Distinguished Lecture file
242 2019-07-10 16:00  Academic Cltural Complex (E9) 5층 스카이라운지  Public Lectures file
241 2019-07-08 14:00  E6, #1322  Ultrabroadband squeezed pulses and their relation to relativity file
240 2019-07-03 15:00  E6-2, 2501  Many-body quantum electrodynamis (QED) with atoms and photons: A new platform for quantum optics" file
239 2019-06-28 14:00  E6-2, #1322  1st Research-exchange meeting of computational material physics file
238 2019-06-28 13:30  #1323, E6-2  Magnetic domains and domain wall conduction in pyrochlore iridate thin films and heterostructures file
237 2019-06-27 14:00  #2502, E6-2  Gapless Kitaev Spin Liquid to Loop and String Gases file
236 2019-06-24 11:00  E6-2, #1323  Topological photonic anomalies file
235 2019-06-17 10:30  #1323, E6-2  Chiral Spintronics file
234 2019-06-12 15:00  Rm# 1323, E6-2  The relation between free and interacting fermionic SPT phases file
233 2019-06-04 17:00  #1323, E6-2  Stochastic nature of bacterial eradication using antibiotics file
232 2019-05-31 11:00  #1323, E6-2  Cavity QED with Spin Qubits file