visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나

Isostatic magnetism

2016.07.04 22:02

Physics 조회 수:1008

장소 #1323(E6-2. 1st fl.) 
일시 Jul. 08 (Fri.) 11:00 AM 
연사 Dr. Michael Lawler(Binghampton Univ. / Cornell Univ.) 

Isostatic magnetism

 

Jul. 08 (Fri.) 11:00 AM, #1323(E6-2. 1st fl.)
Dr. Michael Lawler(Binghampton Univ. / Cornell Univ.)

 

Abstract: Recently, a peculiar state of mechanical (phonon) systems, known as isostatic lattices, was both proposed[1] and fabricated as a metamaterial[2]. This state is on the brink of mechanical collapse and remarkably has special topological properties that guarantee the existence of soliton-like zero modes or edge modes with open boundary conditions. It is unlikely these topological phonons will be found in any solid state system since they are not on the brink of mechanical collapse. In this talk, I will discuss my group's research[3] into extending this physics to magnetic systems where ``mechanical collapse'' is replaced with the loss of magnetic order due to frustration.  I will prove mathematically that indeed an isostatic magnetic exists, a proof that remarkably employs a supersymmetry between magnons and an invented fermionic degree of freedom I have dubbed magninos. I will conclude with a discussion of the possibilities of finding an isostatic magnet among the kagome and distorted kagome families of antiferromagnets and the potential new phenomena that may be observed in such a material.


[1] C. L. Kane and T. C. Lubensky, "Topological boundary modes in isostatic lattices", Nature Physics 10, 39 (2013).
[2] B. G. Chen, N. Upadhyaya, V. Vitelli, "Non-linear conduction via solitons in a topological mechanical insulator", PNAS 111, 13004 (2014).
[3] M. J. Lawler "Supersymmetry protected phases of isostatic lattices and kagome antiferromagnets", Unpublished, see arXiv:1510.03697.


Contact: Eun Gook Moon, Physics Dept., (egmoon@kaist.ac.kr)

번호 일시 장소 연사 제목
59 October 18 (Thu.), 16:00 PM  #1323, E6-2  Prof. Jongseok Lee  Applications of nonlinear optics for condensed matter researches file
58 October 19 (Fri.), 10:00 AM  #1323, E6-2  Dr. Jongsoo Yoo  Energy conversion processes during magnetic reconnection in a laboratory plasma file
57 October 18 (Thu.), 10:00 AM  #1323, E6-2  Dr. Duyoung Min  Understanding membrane protein folding using single-molecule force techniques file
56 October 16 (Tue.), 10:00 AM  #1323, E6-2  Dr. Won-Ki Cho  Capturing protein cluster dynamics and gene expression output in live cells file
55 October 15 (Mon.), 16:00 PM  #1323, E6-2  Dr. Yongjoo Baek  Universal properties of macroscopic current-carrying systems file
54 October 11 (Thu.), 16:00 PM  #1323, E6-2  Prof. Joung-Real Ahn  Dirac electrons in a graphene quasicrystal file
53 October 4 (Thu.), 16:00 PM  #1323, E6-2  Prof. Soo Jin Kim  Engineering light absorption in an ultrathin semiconductor metafilm file
52 September 20 (Thu.), 16:00  #1323, E6-2  Prof. Joo-Hiuk Son  Toward Cancer Treatment Using Terahertz Radiation: Demethylation of Cancer DNA file
51 September 5 (Wed.), 16:00 PM  #1323, E6-2  Dr. Dirk Wulferding  Shining a light on fractional excitations file
50 July 9 (Mon.), 14:00 PM  #1323, E6-2  Prof. Cesar A. Hidalgo, MediaLab, MIT  The principles of collective learning file
49 June 27 (Wed.), 13:30 PM  #1323, E6-2  Dr. Jung Sik Park  Magnetic reversal of artificial spin ice file
48 May 311 (Thu.), 04:00 PM  #1323, E6-2  Prof. Teun-Teun Kim  Dynamic control of optical properties with gated-graphene metamaterials file
47 May 29 (Tue.), 04:00 PM  #1323, E6-2  Prof. Jae-Won Jang  Investigation on metal nanostructure/semiconductor junction and its applications file
46 May 9 (Wed.), 04:00 PM  #1323, E6-2  Prof. Jong-Soo Rhyee  Recent advances in thermoelectric bulk composites file
45 Mar. 2nd (Thu), 4:00 p.m  #1323(E6-2. 1st fl.)  Dr. Jonathan Denlinger, Lawrence Berkeley National Lab  “Progress in the comparison of ARPES to DMFT for d and f strongly correlated electron systems”
44 Feb. 1 (Wed.), 2p.m.  #1323(E6-2. 1st fl.)  Dr. Michihisa Yamamoto, Department of Applied Physics, The University of Tokyo  Quantum electron optics using flying electrons
43 Dec. 9(Fri), 1:30 p.m.  #1323(E6-2. 1st fl.)  Dr. Jae Yoon Cho, POSTECH  Entanglement area law in strongly-correlated systems
42 Dec. 8(Thu) 4p.m.  #1323(E6-2. 1st fl.)  Dr. Jinhyoung Lee, Hanyang University  Dynamical Resonance between Two Optical Cavities via Optomechanical Oscillator
41 Nov. 29(Tue) 4p.m.  #1323(E6-2. 1st fl.)  Dr. SungBin Lee, KAIST  Symmetry Protected Kondo Metals and Their Phase Transitions
40 Nov. 24(Thu) 4p.m.  #1323(E6-2. 1st fl.)  Dr. Jai-Min Choi, Chonbuk National Univiersity  Harmonic oscillator physics with single atoms in a state-selective optical potential