• HOME
  • >
  • 소식
  • >
  • 세미나

Quantum electron optics using flying electrons

2017.01.26 23:43

Physics 조회 수:1339

장소 #1323(E6-2. 1st fl.) 
일시 Feb. 1 (Wed.), 2p.m. 
연사 Dr. Michihisa Yamamoto, Department of Applied Physics, The University of Tokyo 

Quantum electron optics using flying electrons


Dr. Michihisa Yamamoto, Department of Applied Physics, The University of Tokyo

Feb. 1 (Wed.), 2p.m.  #1323(E6-2. 1st fl.)


Abstract: Quantum electron optics is a field in which one manipulates quantum states of propagating electrons. Combined with technologies for confining and manipulating single electrons, it allows us to investigate the scattering and interference of electrons in a unit of a single electron. The necessary elements of quantum electron optics experiments include single electron beam splitter, phase shifter, Coulomb coupler, single electron source and detector, spin-orbit path and electron-pair splitter.

In this talk, we present development of some of these elements. The beam splitter and phase shifter are implemented in our original two-path interferometer [1-3]. This interferometer has been shown to be the only reliable system for the measurement of the transmission phase shift of electrons [4,5]. To suppress decoherence induced by the electron-electron interaction and enhance the interference visibility, we recently developed a two-path interferometer of depleted channels, where single electrons are injected by means of surface acoustic waves (SAWs). We also confirmed that a single electron in a static quantum dot (single electron source) can be adiabatically transferred into a SAW-driven moving quantum dot [6], a necessary ingredient for achieving the high interference visibility of a single flying electron.

Quantum electron optics also targets the manipulation of spins of flying single electrons. We found that the spin information of one or two electrons can be transferred between distant quantum dots, which work as the single electron source and detector, with the fidelity limited only by the spin flips prior to the spin transfer [7,8]. We also realized an electron-pair splitter that can be used to split spin-entangled electrons in a moving dot into different moving dots. Combined with single spin manipulation using the spin-orbit interaction (spin-orbit path) [9], this splitter should allow for Bell measurement of electron spins.

This work is in collaboration with S. Takada (now at Institut Neel), R. Ito and K. Watanabe at the University of Tokyo, B. Bertrand, S. Hermelin, T. Meunier, and C. Bäuerle at Institut Neel, and A. Ludwig and A. D. Wieck at Ruhr-Universität Bochum.


[1] M. Yamamoto et al., Nature Nano. 7, 247 (2012)..

[2] A. Aharony et al., New J. Phys. 16, 083015 (2014).

[3] T. Bautze et al., Phys. Rev. B 89, 125432 (2014).

[4] S. Takada et al., Phys. Rev. Lett. 113, 126601 (2014).

[5] S. Takada et al., Appl. Phys. Lett. 107, 063101 (2015).

[6] B. Bertrand et al., Nanotechnology 27, 204001 (2016).

[7] S. Hermelin et al., Nature 477, 435 (2011).

[8] B. Bertrand et al., Nature Nano. 11, 672 (2016).

[9] H. Sanada et al., Nature Phys. 9, 280 (2013).


Contact: SunYoung Choi, (



Center for Quantum Coherence in Condensed Matter, KAIST

번호 일시 장소 연사 제목
공지 2019/09/18 - 12/5  Seminar Room #1323  Prof. David Schuster and etc.  Fall 2019: Physics Seminar Serises
공지 2019/09/02 - 12/09  Seminar Room 1501  이호성 박사 (한국표준과학연구원) and etc.  Fall 2019: Physics Colloquium
58 Oct. 10(Tue) 4PM  E6-2 #1323  김성웅 교수 (성균관대학교 에너지과학과)  Discovery of New 2D Materials with Diverse Physical Properties
57 Oct. 12 (Fri.), 02:30 PM  E6-2. 1st fl. #1323  Dr. Daniel Kyungdeock Park  Quantum Advantage in Learning Parity with Noise file
56 Oct. 12 (Fri.), 04:00 PM  E6-2. 1st fl. #1323  Dr. HyungWoo Lee  Direct observation of a two-dimensional hole gas at oxide interfaces file
55 Oct. 15, 4pm  (  정현석 교수님 (SNU)  Towards resource-efficient and fault-tolerant quantum computation with nonclassical light
54 Oct. 16 (Fri.), 02:30 PM  Dr. Chulki Kim  Nanoscale magnetic resonance detection towards nano MRI file
53 Oct. 16 (Fri.), 04:00 PM  Dr. Daesu Lee  Hidden room-temperature ferroelectricity in CaTiO3 revealed by a metastable octahedral rotation pattern file
52 Oct. 17th (Mon) 11:00 AM  #1323,(E6-2, 1st fl.)  Nguyen Quang Liem, Institute of Materials Science, VAST, Viettnam  IMS and examples of the studies on optoelectronic materials
51 Oct. 18 (Tue.), 1:30 PM  1st fl. #1323(E6-2)  Dr. Chan-Ho Yang, Department of Physics, KAIST  "Visualization of oxygen vacancy in motion and the interplay with electronic conduction"
50 Oct. 18 (Tue.), 3PM  E6-2. 1st fl. #1323  Dr. JunHo Suh, Korea Research Institute of Standards and Science  “Hybrid quantum systems with mechanical oscillators”
49 Oct. 25 (Fri), 15:00 ~  #1323, E6-2  Daesu Lee,Junwoo Son,MyungJoon Han ,Siheon Ryee,Eun-Gook Moon  Physics Seminar file
48 Oct. 27th(Thu) 4PM  #1323(E6-2)  Dr. 이 강 희, KAIST, Mechnical Engineering  Terahertz Metal Optics
47 October 11 (Thu.), 16:00 PM  #1323, E6-2  Prof. Joung-Real Ahn  Dirac electrons in a graphene quasicrystal file
46 October 15 (Mon.), 16:00 PM  #1323, E6-2  Dr. Yongjoo Baek  Universal properties of macroscopic current-carrying systems file
45 October 15 (Tue.), 16:00 PM  #1323, E6-2  Prof. Pilkyung Moon  Moiré superlattices and graphene quasicrystal file
44 October 15, 2020 (Thursday  CAPP Seminar Room #C303, Creation Hall (3F), KAIST Munji Campus  Prof. Gil-Ho Lee (POSTECH)  Graphene-based Josephson junction microwave bolometer file
43 October 15, 5:00pm  Dr. Samuli Autti  Time crystals, quasicrystals, and time crystal dynamics in the superfluid universe file
42 October 16 (Tue.), 10:00 AM  #1323, E6-2  Dr. Won-Ki Cho  Capturing protein cluster dynamics and gene expression output in live cells file
41 October 16 (Wed), 4:00pm  #1323 (E6-2, 1st fl.)  Dr. Jaewon Song  Emergent black holes and monopoles from quantum fields file
40 October 17 (Thu.), 16:00 PM  #1323, E6-2  Prof. Namkyoo Park  Top down manipulation of Waves : From Metamaterials, Correlated Disorder, Quantum Analogy, to Digital Processing file
39 October 18 (Thu.), 10:00 AM  #1323, E6-2  Dr. Duyoung Min  Understanding membrane protein folding using single-molecule force techniques file