visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
장소 E6-2, #1323 
일시 2015/11/19, 4PM 
연사 Dr. Daesu Lee (University of Wisconsin-Madison) 

Emergent Collective Phenomena and Functions at Reduced Dimensions

 

Nov. 19 (Thur.), 4:00 p.m. , Seminar Room(#1323)
Dr. Daesu Lee, Department of Materials Science & Engineering, University of Wisconsin-Madison

 

Understanding and controlling emergent collective phenomena and their functions have been a central goal of condensed matter physics. However, as a material size is decreased down to a few nanometers, collective phenomena such as ferromagnetism and ferroelectricity tend to be suppressed and even disappear. In this talk, I will show that contrary to common belief, novel collective phenomena and functions can emerge at reduced nanoscale dimensions. Based on novel interactions at nanoscale, I will discuss about (1) emergent ferroelectricity in ultrathin films of an otherwise non-ferroelectric material, (2) strain-gradient-induced collective orders in nanocrystals, and (3) collective metallization behavior in artificial nanostructures of a correlated material. This finding would give groundbreaking insight in condensed matter physics, and also could allow novel design of nanoelectronic applications.


Contact: Yoonsoo Kim, Administration Office.  Tel. 2599

번호 일시 장소 연사 제목
공지 2019/09/18 - 12/5  Seminar Room #1323  Prof. David Schuster and etc.  Fall 2019: Physics Seminar Serises
공지 2019/09/02 - 12/09  Seminar Room 1501  이호성 박사 (한국표준과학연구원) and etc.  Fall 2019: Physics Colloquium
58 May 9 (Thu.), 16:00 PM  #1323, E6-2  Prof. Kwang Geol Lee  Quantum Optical Sensing Using Single Photons And Single Photon Emission from Single Emitters file
57 April 4 (Thu.), 16:00 PM  #1323, E6-2  Prof. Su-Hyun Gong  Chiral spin-photon interaction at nanoscale file
56 October 18 (Thu.), 10:00 AM  #1323, E6-2  Dr. Duyoung Min  Understanding membrane protein folding using single-molecule force techniques file
55 Apr.19 (Fri.), 11:00 AM  #1323, E6-2  Dr. Ji-Sang Park  First-principles studies of semiconductors for solar cell applications file
54 April 23 (Tue.), 4:00 PM  #1323, E6-2  Prof. Johan Chang  From Mott physics to high-temperature superconductivity file
53 May. 8th (Wed), 16:00  E6 Room(#1323)  Jieun Lee  Imaging valley dependent electron transport in 2D semiconductors file
52 April 26 (Fri.), 4:00 PM  #1323, E6-2  Dr. Soonwon Choi  Robust Quantum Metrology using Strongly Interacting Spin Ensembles and Quantum Convolutional Neural Network file
51 May 1 (Wed), 4:00 PM  #1323, E6-2  Dr. Sungkyun Choi  Raman and x-ray scattering study on correlated electron systems: two case examples file
50 June 17 (Mon.), 10:30 AM  #1323, E6-2  Dr. See-Hun Yang  Chiral Spintronics file
49 July 9 (Mon.), 14:00 PM  #1323, E6-2  Prof. Cesar A. Hidalgo, MediaLab, MIT  The principles of collective learning file
48 May 2 (Thu.), 4:00 PM  #1323, E6-2  Prof. Joon Ik Jang  Anomalous optical properties of halide perovskites file
47 January 17 (Fri), 4:00 PM  #1323, E6-2  Hiroki Ikegami  Symmetry Breaking and Topology in Superfluid 3He file
46 June 28 (Fri.), 13:30 PM  #1323, E6-2  Dr. Yusuke Kozuka  Magnetic domains and domain wall conduction in pyrochlore iridate thin films and heterostructures file
45 Apr. 19(Tue.), 2PM  #1323(E6-2. 1st fl.)  Prof. Mark Koepke, Department of Physics and Astronomy, West Virginia University, USA  Nonlocal collisional electron transport in partially ionized plasma generation, structure, and stability
44 Jul. 28 (Thu.) 4PM  #1323(E6-2. 1st fl.)  Prof. Johannes Pollanen, Jerry Cowen Chair of Experimental Physics at Michigan State University  Low Dimensional Electrons: On the Road to Hybrid Quantum Systems
43 Dec. 8(Thu) 4p.m.  #1323(E6-2. 1st fl.)  Dr. Jinhyoung Lee, Hanyang University  Dynamical Resonance between Two Optical Cavities via Optomechanical Oscillator
42 Jul. 08 (Fri.) 2PM  #1323(E6-2. 1st fl.)  Dr. Junhyun Lee, Harvard University  Electronic quasiparticles in the quantum dimer model
41 Mar. 2nd (Thu), 4:00 p.m  #1323(E6-2. 1st fl.)  Dr. Jonathan Denlinger, Lawrence Berkeley National Lab  “Progress in the comparison of ARPES to DMFT for d and f strongly correlated electron systems”
40 Dec. 9(Fri), 1:30 p.m.  #1323(E6-2. 1st fl.)  Dr. Jae Yoon Cho, POSTECH  Entanglement area law in strongly-correlated systems