visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2018-05-29 16:00 
연사  
장소 #1323, E6-2 

Physics Seminar Series

 

 

Investigation on metal nanostructure/semiconductor junction and its applications

 

Prof. Jae-Won Jang

Dept. of Physics, Pukyong National University

 

May 29 (Tue.), 04:00 PM

#1323, E6-2

 

Abstract:

Hybrid nanostructures have attracted attention due to many novel properties that are lacking in any one material. Among hybrid nanostructures, semiconductor with metal nanomaterials have been more exploited because metals and semiconductors have different properties that, in combination, result in unique electrical and optical properties. Localized surface plasmon resonance (LSPR), which is one of the novel properties of metal nanoparticles (NPs), has been used as a good strategy for increasing the opto-electric performance in semiconductors. In this presentation, improvement of the opto-electronic properties of non-single crystallized nanowire (NW) devices with space charges generated by LSPR is demonstrated. The photocurrent and spectral response of single polypyrrole (PPy) NW devices are increased by electrostatically attached Ag nanoparticles (NPs). In particular, it is also proved the space charge generation by LSPR of Ag NPs by means of characterizing current–voltage (J–V) dependence and finite-differential time domain (FDTD) simulation on the NW devices. Moreover, semiconductor type dependent role of metal NP in metal NPs decorated semiconductor NW is demonstrated by using light irradiated Kevin probe force microscopy. As an another example of applications based on metal nanostructures and semiconductor junction, it is also demonstrated that a non-traditional metal–semiconductor transition governed by two-layer conduction is possible by tuning the conducting channel of one layer of the two-layer conduction system. By means of the electroless deposition method Au nanofeatures (AuNFs) on p-type silicon (p-Si) is produced as the two-layer conduction system, controlling AuNF coverage (Au%) below and above the percolation threshold (pc). Even when the AuNF coverage percentage is larger than pc, the resistivities of the AuNFs on p-Si show unconventional metal-semiconductor transition as the temperature increases.

 

Department of Physics, KAIST

 

5b07a2c83fc9688fef6c438c.png

 

번호 날짜 연사 제목
공지 2025-02-24 16:00    2025년 봄학기 콜로키움 안내
공지 2025-02-27 16:00    2025년 봄 물리학과 특별세미나 (광학/응집물리 분야)
354 2019-09-27 14:30    Spin-charge conversion in topological insulators for spintronic applications file
353 2019-09-27 16:00    0D/1D/2D/3D III-V materials grown by MBE for Optelectronics file
352 2019-10-15 16:00    Moiré superlattices and graphene quasicrystal file
351 2019-10-16 16:00    Emergent black holes and monopoles from quantum fields file
350 2019-10-17 16:00    Top down manipulation of Waves : From Metamaterials, Correlated Disorder, Quantum Analogy, to Digital Processing file
349 2019-10-25 15:00    Physics Seminar file
348 2019-10-29 10:00    Unconventional Spin Transport in Quantum Materials file
347 2019-10-29 14:30    Quantum sensing file
346 2019-10-29 16:00    Particles and Gravity via String Geometry file
345 2019-10-31 10:00    Kondo meets Hubbard: Impurity physics for correlated lattices file
344 2019-11-01 14:30    Squeezing the best out of 2D materials file
343 2019-11-01 16:00    Electron transport through weak-bonded contact metal with low dimensional nano-material file
342 2019-11-05 16:00    Study on nanomaterials by the development of ultrahigh resolution laser-photoelectron microscopy (PEEM) file
341 2019-11-07 16:00    Integrated quantum photonics with solid-state quantum emitters file
340 2019-11-14 16:00    Semi-classical model of polariton propagation file
339 2019-11-20 16:00    Correlation between superconducting transition temperature and critical current density in irradiated iron-based superconductors file
338 2019-11-28 16:00    Generation of coherent EUV emissions using ultrashort laser pulses file
337 2019-12-03 16:00    Toward Quantum Materials with Correlated Oxides file
336 2019-12-05 16:00    Subwavelenth Photonic Devices: From Single Photon Sources to Solar Cell file
335 2019-12-13 13:00    Computational Material Designs: Current Status and Future Directions file