visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2023-04-27 11:00 
일시 April 27 (Thu) 11 AM 
장소 E6-2 #1322 
연사 Dr. Kyung Ho Kim (Royal Holloway University of London) 
Royal Holloway University of London 에서 초천도 나노와이어 양자현상을 연구하고 계신 김경호 박사를 모시고 세미나를 진행할 예정입니다.
관심있는 분들의 많은 참여 부탁드립니다.
 
We are delighted to announce the upcoming seminar by Dr. Kyung Ho Kim  (Royal Holloway University of London).
 
Date: April 27 (Thu) 11 AM
Place: 1322 Natural Science (No Zoom broadcasting)
Speaker: Dr. Kyung Ho Kim  (Royal Holloway University of London)  
 
Title: Inverse Shapiro steps and coherent quantum phase slip in superconducting nanowires  
 
Abstract:
We observe clearly visible steps at constant currents I=2efn on the current voltage characteristic of a superconducting nanowire with integer n, exposed to microwave of frequency f [1]. These current steps are dual steps to the well-known Shapiro steps in Josephson junctions which are currently used for commercial Josephson voltage standard in quantum metrology. The dual Shapiro step, or inverse Shapiro step, was theoretically predicted more than 30 years ago in Josephson junctions [2], but it was elusive for the experimentalists due to challenges of circuit engineering. Superconducting nanowires are another system that is predicted to show the dual Shapiro steps due to the coherent quantum phase slip [3]. We embed a superconducting nanowire in an appropriate electromagnetic environment. The inverse Shapiro step is exceedingly promising for closing the so-called quantum metrology triangle as the voltage standard is based on the usual Shapiro steps. I will discuss physics of QPS in superconducting nanowires and condition for the observation of the current quantization.  
 
[1] Shaikhaidarov, R.S., Kim, K.H., Dunstan, J.W. et al. Nature 608, 45–49 (2022) 
[2] Averin, D.V., Zorin, A.B., Likharev, K.K.: Bloch oscillations in small Josephson junctions. Soviet Physics - JETP 61(2), 407 (1985) 
[3] Mooij, J.E., Nazarov, Y.V.: Superconducting nanowires as quantum phase-slip junctions. Nature Physics 2(3), 169 (2006)
 
번호 날짜 장소 제목
313 2016-01-11 16:00  E6-2, #1323  Mott Physics in the Strong Spin-Orbit Coupling Regime
312 2015-12-03 16:00  E6-2, #1323  Hybrid solid state spin qubits in wide bandgap semiconductors
311 2019-07-31 16:00  E6-2, #1323  Features of ballistic superconducting graphene file
310 2015-11-10 16:00  E6-2, #1323  Rapid heating of matter using high power lasers
309 2015-11-23 13:30  E6-2, #1323  What's Beyond the Standard Model? Lessons from Run I and what might come in Run II
308 2019-06-24 11:00  E6-2, #1323  Topological photonic anomalies file
307 2015-12-09 14:00  E6-2, #1323  SWELLABLE COLLOIDAL PARTICLES ARE SWELL
306 2015-12-02 16:00  E6-2, #1323  Samarium Hexaboride: Is it a Topological insulator?
305 2015-12-01 16:00  E6-2, #1323  Introducing extra dimensions to spectroscopic studies of advanced quantum materials
304 2015-12-11 15:45  E6-2, #1323  Dynamical mean field theory studies on heavy fermion system
303 2016-01-26 14:00  E6-2, #1323  Electrochemistry on Nano- and Atomic Levels: Scanning Probe Microscopy Meets Deep Data
302 2019-07-25 16:00  E6-2, #1323  Band topology of twisted bilayer graphene file
301 2023-03-02 11:00  E6-2, #1322  Probing Anomalies of Non-Invertible Symmetries with Symmetry TFTs
300 2023-09-18 11:00  E6-2, #1322  Magic polarisation trapping of polar molecules for tunable dipolar interactions file
299 2023-08-23 16:00  E6-2, #1322  [High Energy Theory Seminar] A spacetime tensor network for AdS3/CFT2
298 2023-11-30 10:30  E6-2, #1322  [High-Energy Theory Seminar] 3d-3d correspondence and 2d N = (0,2) boundary conditions
297 2019-06-28 14:00  E6-2, #1322  1st Research-exchange meeting of computational material physics file
296 2023-11-23 16:00  E6-2(Natural Science B/D). 1st fl. #1323  Deciphering the Enigma of Quantum Materials by X-ray Scattering and Spectroscopy
295 2023-11-16 16:00  E6-2(Natural Science B/D). 1st fl. #1323  Electric-field control of emergent phenomena in correlated oxide thin films
294 2023-11-09 16:00  E6-2(Natural Science B/D). 1st fl. #1323  Assessing the Capability of Near-Term Photonic Devices Towards Quantum Supremacy