visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2018-05-31 16:00 
연사  
장소 #1323, E6-2 

Physics Seminar Series

 

 

Dynamic control of optical properties with gated-graphene metamaterials

 

Prof. Teun-Teun Kim

 

Center for Integrated Nanostructure Physics (CINAP)

Institute for Basic Science (IBS)

Sungkyunkwan University (SKKU)

 

May 311 (Thu.), 04:00 PM

#1323, E6-2

 

Abstract:

In this talk, I will present recent my research results with different design of artificial media, called metamaterials which consist of the arrangement of periodic subwavelength optical elements that exhibit unusual optical properties beyond what natural materials can offer. I will show the gate-induced switching and linear modulation of terahertz waves can be achieved in a hybrid material system consisting of artificially constructed meta-atoms and an atomically thin graphene layer [1]. It has been experimentally demonstrated that by integrating graphene with metamaterials, significant transmission amplitude modulation of up to 50% with high modulation speed of about 80ns was achieved with gated graphene metamaterials. Based this approach, I will introduce electrically controllable unique optical properties such as optical activity [2], anomalous refraction, and focusing [3], and analogue of electromagnetically induced transparency (EIT) [4] by integrating 2D graphene layer onto metamaterials with different functional unit cells. The switching and linear modulation of unique optical properties are realized by changing coupling among meta-atoms or electrical conductivity of metallic structures caused by increased sheet conductivity of the single layer graphene. Benefitting from the electrically controllable unique optical properties, the proposed graphene based meta-devices are expected to provide a myriad of important applications such as active polarization controllers, active slow light devices, ultrasensitive sensors and nonlinear devices. 

Reference 

[1] S. H. Lee, et al, Nature Materials 11,936-641 (2012)

[2] T. -T. Kim, et al, Science Advances 3, e1701377 (2017)

[2] T. -T. Kim, et al, Advanced Optical Materials 6(1)1700507, (2018)

[3] T. -T. Kim, et al, ACS Photonics, 5(5), 1800-1807(2018).

 

 

Department of Physics, KAIST

번호 날짜 연사 제목
공지 2025-02-24 16:00    2025년 봄학기 콜로키움 안내
공지 2025-02-27 16:00    2025년 봄 물리학과 특별세미나 (광학/응집물리 분야)
365 2023-06-08 16:00    Thermal decoupling in high-Tc cuprate superconductors
364 2019-05-31 11:00    Cavity QED with Spin Qubits file
363 2022-05-27 11:00    Current Status and Future Plans of ADMX file
362 2015-07-23 13:30    Enhanced ZnO based UV photonics and related applications file
361 2020-10-15 16:00    Graphene-based Josephson junction microwave bolometer file
360 2022-06-03 11:00    (응집물리 세미나) Theoretical Investigation of Exotic Quantum States in Low-dimensional Materials
359 2025-06-26 16:00  Prof. Eun-Ah Kim (Cornell)  Attention to Quantum Complexity file
358 2023-03-27 15:00    A coherent mechanical oscillator pumped by a suspended quantum dot file
357 2022-09-21 16:00    Materials and Device Nanofabrication of Optical Metasurfaces file
356 2023-11-01 16:00    [High Energy Theory Seminar] Modular functions and 3D N=4 rank-zero superconformal field theories
355 2019-02-21 16:00    B-meson charged current anomalies - Theoretical status file
354 2023-03-30 16:00    Detecting axions with chiral magnetic effects file
353 2019-09-18 16:00    Fall 2019: Physics Seminar Serises file
352 2016-03-07 16:00    Physics Colloquium : 2016 Spring file
351 2023-11-15 16:00    Quantum hydrodynamic theory for plasmonics: from molecule-coupling to nonlinear optics
350 2022-10-04 16:00    Distinguishing 6d (1, 0) SCFTs
349 2015-03-04 12:00    Bioimaging and Biosensing Using Near-Infrared Fluorescence file
348 2019-05-03 11:00    Exotic Magnetism file
347 2014-12-22 14:00    Dynamics of molecular motors: Power stroke vs Brownian ratchet file
346 2019-05-30 16:00    Tuning the excitonic properties of semiconductors with light-matter interactions file