visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2023-01-11 11:00 
연사  
장소 E6-2 #1323 
물리학과 양용수 교수님 연구실에서 한국과학기술연구원(KIST) 강상준 박사님을 초청하여,
로렌츠-주사투과전자현미경을 이용한 유연한 강자성체의 자기-탄성 결합에 대한 직접 관측에 대한 세미나를 아래와 같이 개최하고자 합니다.
구성원 여러분들의 많은 관심과 참여 부탁 드립니다.
 
* Title: Directly proving magnetoelastic coupling in a soft ferromagnet using Lorentz 4D-STEM

* Speaker: Sangjun Kang (KIST)   강상준 박사

* Date: 11am, 11th January 2023 (Wednesday)

* Place: E6-2 1323 (no zoom broadcasting)

Abstract:
Soft ferromagnetic materials, e.g. silicon ferrites and Fe-based amorphous alloys, play a major role in the conversion of energy owing to their high energy efficiency and power density [1]. Their magnetic structure consists of domains, where the magnetic dipoles are aligned to minimize the magnetostatic energy. The resulting magnetic structure is highly sensitive to local variation in the atomic spacing, i.e., atomic strain, of the materials due to magnetoelastic coupling through magnetocrystalline anisotropy (K_c) and stress anisotropy (K_σ) [2]. The anisotropy contributions raise coercivity (H_c) by restricting domain wall motions. In particular, for Fe-based amorphous alloys, which originally possess an isotropic atomic structure and extremely low H_c, the magnetic properties are extremely sensitive and usually deteriorated to the imposed stress [3]. This can be critical for their application in magnetoelectric machines, e.g. induction motors, which can be mechanically stressed during usage. To understand fundamental magnetism, e.g. magnetoelastic coupling, as a basis to design new materials, correlative measurements of the magnetic and atomic structure of soft ferromagnetic materials are desired.
We have developed Lorentz 4-dimensional scanning transmission electron microscopy (Ltz-4D-STEM) for correlative mapping of the magnetic structure, strain fields, and relative packing density and applied this approach to deformed Fe-based metallic glasses as illustrated in Figure 1. Our approach considers the momentum transfer of the electron beam due to the local magnetic field, the elliptic distortion of the amorphous diffraction ring under strain, and the area encompassed by the ring to quantify the relative atomic density and reveal their spatial-correlative variance [4]. This enables a direct pixel-level correlation of the magnetic and atomic structure and thus experimentally maps the magnetoelastic energy of soft ferromagnets. This method opens a new door to studying magnetic materials.
 

[1] Li et al., Progress in Materials Science 103, 235-318 (2019)

[2] Silveyra et al., Science 362, 418 (2018)

[3] Shen et al., Nat. Commun. 9, (4414), 2018

[4] Kang et al, Nat. Commun, Under review. Currently available at Nature portfolio https://doi.org/10.21203/rs.3.rs-1545335/v1 (2022)

Attached: C.V

 

번호 날짜 연사 제목
공지 2025-02-24 16:00    2025년 봄학기 콜로키움 안내
공지 2025-02-27 16:00    2025년 봄 물리학과 특별세미나 (광학/응집물리 분야)
394 2022-08-09 14:00    Quantum biology in fluorescent protein: a new model system to study quantum effects in biology file
393 2022-08-08 14:00    Classical Shadow Tomography for Analog Quantum Simulators
392 2022-08-01 10:00    [Update 세미나 영상] James Webb Space Telescope & OTE Commissioning
391 2022-07-21 16:00    Quintessential axions file
390 2022-07-14 15:00    Pure two-dimensional quantum electron liquid and its phase transition
389 2022-07-14 14:15    Hund and electronic correlations in ruthenium-based systems
388 2022-07-14 13:30    Electronic structure and anomalous transport properties of topological materials by first principle calculation
387 2022-06-23 11:00    JILA’s search for the electron’s Electric Dipole Moment (eEDM) to probe physics beyond the standard model file
386 2022-06-10 16:00    Fe5GeTe2의 나선형 자성특성과 자기저항의 전류밀도 의존성 연구 file
385 2022-06-10 14:30    Combinatorial strategy for condensed matter physics: study on rare earth hexaborides thin films file
384 2022-06-10 11:00    Record-quality two-dimensional electron systems file
383 2022-06-03 11:00    (응집물리 세미나) Theoretical Investigation of Exotic Quantum States in Low-dimensional Materials
382 2022-06-03 09:30    (Quantum-&Nano-Photonics Webinar) Seeing glass in a new light: reimagine chalcogenide photonics file
381 2022-05-30 16:00    Light manipulation using 2D layered semiconductors
380 2022-05-27 11:00    Current Status and Future Plans of ADMX file
379 2022-05-26 16:00    (광학분야 특별세미나)Topological photonic devices
378 2022-05-25 16:00    Uncovering New Lampposts for Dark Matter: Continuum or Conformal
377 2022-05-25 14:00    Atomic-level insights into ferroelectric switching and preferred orientation of ultrathin hafnia file
376 2022-05-23 16:00    Novel electronic transport in topological van der Waals magnets
375 2022-05-20 11:00    (응집물리 세미나) Exploration of new polymorphs in van der Waals crystals