visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2022-04-01 16:00 
연사  
장소 Zoom webinar 

 

SRC Seminar

 

 

High-field Electron Transport and Interaction Induced Phenomena in 2D Materials

 

Dr. Kayoung Lee

Electrical Engineering, KAIST

 

Apr. 1 (Fri.), 04:00 PM

https://kaist.zoom.us/j/89879980781
회의 ID: 898 7998 0781

암호: 808795

 

 

 

Abstract:

In this talk, I will present our research that spans from fundamental electron transport mechanisms to interaction induced phenomena in low-dimensional electron systems, each of which is in dire need of

innovation to incubate new material-based devices with high performance. Using double bilayer graphene heterostructures, separated by a hexagonal boron nitride dielectric, we studied interactions

between the two bilayers, where the interlayer spacing is smaller than the intra-layer particle spacing. I will present frictional drag probed on the double bilayer systems, a phenomenon in which charge current

flowing in one (drive) layer induces a voltage drop in the opposite (drag) layer. At temperatures (T) lower than 10 K, we observe a large anomalous negative drag near the drag layer charge neutrality, which increases dramatically with reducing T, strikingly becoming comparable to the layer resistivity at the lowest T = 1.5 K. A comparison of the drag resistivity and the drag layer Peltier coefficient suggests a thermoelectric origin of the drag. The talk will then move on to our recent investigation into electron transport and drift velocity saturation at high electric field in emerging 2D InSe semiconductor with a mobility >2700 cm2/Vs at room temperature. I will report the first measured saturation velocity of 2D InSe exceeding 2 x 107 cm/s. Employing our modified optical phonon emission model to explain the drift velocity saturation at high electric field, we estimate the energy of InSe optical phonons.

 

 

Contact: SunYoung Choi, (sun.0@kaist.ac.kr)

Center for Quantum Coherence in Condensed Matter, KAIST

 

번호 날짜 연사 제목
공지 2025-02-24 16:00    2025년 봄학기 콜로키움 안내
공지 2025-02-27 16:00    2025년 봄 물리학과 특별세미나 (광학/응집물리 분야)
370 2022-05-16 16:00    Design synthetic topological matter with atoms and lights
369 2022-05-13 16:00    High-fidelity iToffoli gate for fixed-frequency superconducting qubits file
368 2022-05-13 14:30    Topological Superconducting Spintronics Towards Zero-Power Computing Technologies file
367 2022-05-12 16:00    New frontiers of electroweak physics at the LHC
366 2022-05-11 16:00    Gravity as a phenomenon in quantum dynamics
365 2022-05-10 16:00    (광학분야 특별세미나)Testing quantum thermodynamics using quantum optics
364 2022-05-09 16:00    Searching for new electronic properties in correlated material flatland
363 2022-05-02 16:00    What can we learn from the history of science and technology?(우리말강의)
362 2022-04-28 16:00    (광학분야 특별세미나)Adiabaticity and symmetry in optical waveguide design
361 2022-04-25 16:00    Ultrafast electron beam, a tool to explore the nanoscopic world of materials(우리말강의)
360 2022-04-15 11:00    (응집물리 세미나) First-principles studies of polar oxides and their applications file
359 2022-04-14 16:00    (광학분야 특별세미나)Holographic tomography of dielectric tensors at optical frequency
358 2022-04-13 10:30    Harnessing topology and correlations from singularities in 3d-kagome metals
357 2022-04-11 16:00    Emergence of Statistical Mechanics in Quantum Systems
356 2022-04-08 11:00    (응집물리 세미나) Flat-surface-assisted physical phenomena occurring in single crystal metal thin film file
355 2022-04-04- 16:00    New paradigms in Quantum Field Theory
» 2022-04-01 16:00    High-field Electron Transport and Interaction Induced Phenomena in 2D Materials file
353 2022-03-31 16:00    (광학분야 특별세미나)Ultrafast time-resolved spectroscopy in topological materials
352 2022-03-31 10:00    Weiss fields for Quantum Spin Dynamics file
351 2022-03-29 10:00    Non-reciprocal phase transitions file