Quantum electron optics using flying electrons
2017.01.26 23:43
장소 | #1323(E6-2. 1st fl.) |
---|---|
일시 | Feb. 1 (Wed.), 2p.m. |
연사 | Dr. Michihisa Yamamoto, Department of Applied Physics, The University of Tokyo |
Quantum electron optics using flying electrons
Dr. Michihisa Yamamoto, Department of Applied Physics, The University of Tokyo
Feb. 1 (Wed.), 2p.m. #1323(E6-2. 1st fl.)
Abstract: Quantum electron optics is a field in which one manipulates quantum states of propagating electrons. Combined with technologies for confining and manipulating single electrons, it allows us to investigate the scattering and interference of electrons in a unit of a single electron. The necessary elements of quantum electron optics experiments include single electron beam splitter, phase shifter, Coulomb coupler, single electron source and detector, spin-orbit path and electron-pair splitter.
In this talk, we present development of some of these elements. The beam splitter and phase shifter are implemented in our original two-path interferometer [1-3]. This interferometer has been shown to be the only reliable system for the measurement of the transmission phase shift of electrons [4,5]. To suppress decoherence induced by the electron-electron interaction and enhance the interference visibility, we recently developed a two-path interferometer of depleted channels, where single electrons are injected by means of surface acoustic waves (SAWs). We also confirmed that a single electron in a static quantum dot (single electron source) can be adiabatically transferred into a SAW-driven moving quantum dot [6], a necessary ingredient for achieving the high interference visibility of a single flying electron.
Quantum electron optics also targets the manipulation of spins of flying single electrons. We found that the spin information of one or two electrons can be transferred between distant quantum dots, which work as the single electron source and detector, with the fidelity limited only by the spin flips prior to the spin transfer [7,8]. We also realized an electron-pair splitter that can be used to split spin-entangled electrons in a moving dot into different moving dots. Combined with single spin manipulation using the spin-orbit interaction (spin-orbit path) [9], this splitter should allow for Bell measurement of electron spins.
This work is in collaboration with S. Takada (now at Institut Neel), R. Ito and K. Watanabe at the University of Tokyo, B. Bertrand, S. Hermelin, T. Meunier, and C. Bäuerle at Institut Neel, and A. Ludwig and A. D. Wieck at Ruhr-Universität Bochum.
[1] M. Yamamoto et al., Nature Nano. 7, 247 (2012)..
[2] A. Aharony et al., New J. Phys. 16, 083015 (2014).
[3] T. Bautze et al., Phys. Rev. B 89, 125432 (2014).
[4] S. Takada et al., Phys. Rev. Lett. 113, 126601 (2014).
[5] S. Takada et al., Appl. Phys. Lett. 107, 063101 (2015).
[6] B. Bertrand et al., Nanotechnology 27, 204001 (2016).
[7] S. Hermelin et al., Nature 477, 435 (2011).
[8] B. Bertrand et al., Nature Nano. 11, 672 (2016).
[9] H. Sanada et al., Nature Phys. 9, 280 (2013).
Contact: SunYoung Choi, (sunyoungchoi@kaist.ac.kr)
Center for Quantum Coherence in Condensed Matter, KAIST
댓글 0
번호 | 일시 | 장소 | 연사 | 제목 |
---|---|---|---|---|
공지 | 2019/09/18 - 12/5 | Seminar Room #1323 | Prof. David Schuster and etc. | Fall 2019: Physics Seminar Serises |
공지 | 2019/09/02 - 12/09 | Seminar Room 1501 | 이호성 박사 (한국표준과학연구원) and etc. | Fall 2019: Physics Colloquium |
121 | 2015/10/16, 3PM | E6-2, 5th fl. #5318 | Dr. Pierre Pugnat , (CNRS-LNCMI) | High Magnetic Fields to Probe the sub-eV range of Particle/Astroparticle Physics - From the OSQAR experiments at CERN up to new perspectives at LNCMI-Grenoble |
120 | July 2. 2018 (Monday) 3:00 PM | Seminar Room (C303), Creation Hall (3F), KAIST Munji Campus | Dr. Peter Winter (Argonne National Laboratory) |
High Precision Magnetic Field Measurement for the Muon g-2 Experiment
![]() |
119 | Jun. 1(Wed) 10:30 AM | BK21 Conference Room (#1318, E6-2) | Dr. Noriaki Horiuchi, Editor, Nature Photonics | Welcome to Nature Photonics |
118 | May. 11 (Fri.), 04:00 PM | E6-2. 1st fl. #1323 | Dr. Nam Kim |
암페어 단위 재정의와 단전자 펌프 소자 개발
![]() |
117 | April 26 (Tue), 4PM | #1323(1st Floor. E6-2) | Dr. Myung-Ho Bae, Korea Research Institute of Standards and Science | Transport spectroscopy for electronic bands in carbon-based nanomaterials with weak-bond contacts |
116 | 3 PM, 12 Jun (Wed), 2019 | Rm# 1323, E6-2 | Dr. Minyoung You |
The relation between free and interacting fermionic SPT phases
![]() |
115 | Sep. 29 (Thu), 4:00 PM | E6-2. #2501(2nd fl.) | Dr. Minu Kim, Institute for Basic Science, Seoul National University | Exploring the phase diagram of BaBiO3: epic voyage of just another bad trip? |
114 | Apr. 28 (Fri.), 04:00 PM | #1323 (E6-2. 1st fl.) | Dr. Minkyung Jung Research Institute, DGIST | Carbon nanotubes coupled to superconducting impedance matching circuits |
113 | July 30 (Tue), 4:00 PM | #1323, E6-2 | Dr. Mingu Kang |
Dirac fermions and flat bands in correlated kagome metals
![]() |
112 | Nov. 3 (Fri.), 2:30 PM | #1323 (1st fl., E6-2.) | Dr. MinChul Lee(Department of Applied Physics, Kyung Hee Univ.) |
Quantum Resistor-Capacitor Circuit with Majorana Edge States
![]() |
111 | Sep. 10 (Tue.), 03:00 PM | E6-2. 1st fl. #1323 | Dr. Mikhail Kiselev |
Two-Stage Kondo Effect
![]() |
» | Feb. 1 (Wed.), 2p.m. | #1323(E6-2. 1st fl.) | Dr. Michihisa Yamamoto, Department of Applied Physics, The University of Tokyo | Quantum electron optics using flying electrons |
109 | 2015/11/23, 1:30PM | E6-2, #1323 | Dr. Michael Park (Stanford University) | What's Beyond the Standard Model? Lessons from Run I and what might come in Run II |
108 | Jul. 08 (Fri.) 11:00 AM | #1323(E6-2. 1st fl.) | Dr. Michael Lawler(Binghampton Univ. / Cornell Univ.) | Isostatic magnetism |
107 | May 19, 2016 (Thur.) 3PM | May 19, 2016 (Thur.) 3PM, | Dr. Michael Betz, CERN | The CERN Resonant WISP Search: Development, Results and Lesson-Learned |
106 | 2015/10/15, 10AM | E6-2, 5th fl. #5318 | Dr. Mark D. Bird (Florida State University) | Development of Large-Bore, High Field Magnets at the NHMFL |
105 | Mar. 24 (Fri.), 2:30 PM | #1323 (1st fl. E6-2). | Dr. MahnSoo Choi | Topological Dynamics |
104 | October 26 (Fri.), 4:00 PM | #1323, E6-2 | Dr. Kyusung Hwang |
Coexisting triple-point and nodal-line topological magnons and thermal Hall effect in pyrochlore iridates
![]() |
103 | 2015/07/16, 4PM | E6-2, 1318 | Dr. Kyunghan Hong(MIT) | Next-generation ultrafast laser technology for nonlinear optics and strong-field physics |
102 | November 1 (Thu.), 16:00 PM | #1323, E6-2 | Dr. KyeoReh Lee |
Direct holography from a single snapshot
![]() |