visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
장소 E6-2. 1st fl. #1323 
일시 Apr. 28 (Fri.), 02:30 PM 
연사 Dr. JeongYoung Park Graduate School of EEWS, KAIST 

 

Hot electron generation at surfaces and its impact to catalysis and renewable energy conversion

 

Dr. JeongYoung Park

Graduate School of EEWS, KAIST

Apr. 28 (Fri.), 02:30 PM

E6-2. 1st fl. #1323

 

 

Abstract: 

A pulse of high kinetic energy electrons (1–3 eV) in metals can be generated after surface exposure to external energy, such as the absorption of light or exothermic chemical processes. These energetic electrons are not at thermal equilibrium with the metal atoms and are called ‘‘hot electrons’’. The detection of hot electrons and understanding the correlation between hot electron generation and surface phenomena are challenging questions in the surface science and catalysis community. Hot electron flow generated on a gold thin film by photon absorption (or internal photoemission) appears to be correlated with localized surface plasmon resonance. 

In this talk, I will show strategy to quantify the non-adiabatic energy transfer and detect hot electron flux during the elementary steps of the energy conversion process and catalytic reaction processes occurring at both of solid-gas and solid-liquid interfaces. To detect and utilize the hot electron flows, the nanodiodes consisting of metal catalyst film, semiconductor layers, and Ohmic contact pads were constructed It was shown that the chemicurrent or hot electron flows were well correlated with the turnover rate of CO oxidation or hydrogen oxidation separately measured by gas chromatography, suggesting the intrinsic relation between catalytic reaction and hot electron generation. We show a novel scheme of graphene catalytic nanodiode composed of a Pt NPs array on graphene/TiO2 Schottky nanodiode, which allows detection of hot electron flows induced by hydrogen oxidation on Pt NPs. By analyzing the correlation between the turnover rate (catalytic activity) and hot electron current (chemicurrent) measured on the graphene catalytic nanodiodes, we demonstrate that the catalytic nanodiodes utilizing a single graphene layer for electrical connection of Pt NPs are beneficial for the detection of hot electrons due to not only atomically thin nature of graphene but also reducing the height of the potential barrier existing at the Pt NPs/graphene interface. I will show that hot electron flow generated on a gold thin film by photon absorption (or internal photoemission) is amplified by localized surface plasmon resonance. Finally, The effect of surface plasmons on the catalytic and photocatalytic activity on metal–oxide hybrid nanocatalysts is also highlighted. These phenomena imply the efficient energy conversion from the photon energy to the chemical energy, with the potential application of hot electron-based photocatalytic devices.

 

 

 

번호 일시 장소 연사 제목
공지 2019/09/18 - 12/5  Seminar Room #1323  Prof. David Schuster and etc.  Fall 2019: Physics Seminar Serises
공지 2019/09/02 - 12/09  Seminar Room 1501  이호성 박사 (한국표준과학연구원) and etc.  Fall 2019: Physics Colloquium
96 February 21 (Thu.), 16:00 PM  #5313, E6-2  Prof. Diptimoy Ghosh  B-meson charged current anomalies - Theoretical status file
95 2015/07/23,1:30PM  E4, B401  Prof. Gilles Lérondel (Univ. of Technology of Troyes)  Enhanced ZnO based UV photonics and related applications file
94 May 31 (Fri.), 11:00 AM  #1323, E6-2  Prof. Guido Burkard  Cavity QED with Spin Qubits file
93 AUG. 31 (Thu.), 2 PM  #5318(E6-2. 5th fl.)  Prof. Hiroaki Ishizuka (The University of Tokyo)  “Berry phase and nonlinear response: photocurrent in noncentrosymmetric insulators and Weyl semimetals” file
92 DEC. 11 (Tue), 04:00 PM  E6-2. 1st fl. #1323  Prof. Hiroshi Shinaoka  Natural compact representation of Matsubara Green’s functions: applications to analytic continuation and quantum many-body simulations file
91 July 13, 2018 at 14:00  Room 5318, KAIST Natural Sciences Lecture Hall(E6).  Prof. Ian Lewis (The University of Kansas, Department of Physics & Astronomy)  Loop Induced Single Top Partner Production and Decay at the LHC
90 May 29 (Tue.), 04:00 PM  #1323, E6-2  Prof. Jae-Won Jang  Investigation on metal nanostructure/semiconductor junction and its applications file
89 November 7 (Thu.), 16:00 PM  #1323, E6-2  Prof. Je-Hyung Kim  Integrated quantum photonics with solid-state quantum emitters file
88 Dec. 15 (Fri.), 9:20 AM  E6-2, Lecture Room #1323  Prof. Jhinhwan Lee 외 9명  Workshop on Magnetism in Unconventional Superconductors 개최 file
87 November 14 (Thu.), 16:00 PM  #1323, E6-2  Prof. Ji-Hun Kang  Semi-classical model of polariton propagation file
86 April 23 (Tue.), 4:00 PM  #1323, E6-2  Prof. Johan Chang  From Mott physics to high-temperature superconductivity file
85 Jul. 28 (Thu.) 4PM  #1323(E6-2. 1st fl.)  Prof. Johannes Pollanen, Jerry Cowen Chair of Experimental Physics at Michigan State University  Low Dimensional Electrons: On the Road to Hybrid Quantum Systems
84 2017.1.9(Mon), 4PM  Lecture Hall, College of Natural Sciences [#1501,E6-2]  Prof. John Michael Kosterlitz, Brown University  Topological Defects and Phase Transitions" file
83 May 9 (Wed.), 04:00 PM  #1323, E6-2  Prof. Jong-Soo Rhyee  Recent advances in thermoelectric bulk composites file
82 October 18 (Thu.), 16:00 PM  #1323, E6-2  Prof. Jongseok Lee  Applications of nonlinear optics for condensed matter researches file
81 September 20 (Thu.), 16:00  #1323, E6-2  Prof. Joo-Hiuk Son  Toward Cancer Treatment Using Terahertz Radiation: Demethylation of Cancer DNA file
80 April 11 (Thu.), 16:00 PM  #1323, E6-2  Prof. Joo-Hyoung Lee, GIST  Massive screening for cathode active materials using deep neural network file
79 May 2 (Thu.), 4:00 PM  #1323, E6-2  Prof. Joon Ik Jang  Anomalous optical properties of halide perovskites file
78 October 29 (Tue.), 14:30 PM  #1323, E6-2  Prof. Jörg Wrachtrup  Quantum sensing file