visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2018-04-13 10:00 
일시 April 13 (Fri.), 10am 
장소 #1323 (E6-2, 1st fl.) 
연사 Dr. Sungkun Hong 

Physics Seminar

 

Quantum meets Mechanics: from Quantum Information to Fundamental Research

 

Dr. Sungkun Hong

Vienna Center for Quantum Science and Technology, University of Vienna

 

April 13 (Fri.), 10am

#1323 (E6-2, 1st fl.)

 

 

Abstract:

Studying quantum aspects of macroscopic moving bodies is a new emerging field in quantum physics. The main experimental approach is cavity optomechanics, where photons in the cavity are used to measure and manipulate motional states of mechanical oscillators. Cavity optomechanics, together with advancements in microfabrication of mechanical devices, has allowed us to observe and control mechanical resonators at the quantum level. This opens new exciting possibilities for quantum information science and for studying quantum physics in hitherto untested macroscopic scales.

In this talk, I will describe two different quantum optomechanics experiments that I have been doing in Vienna. First, I will present our progress in utilizing on-chip optomechanical devices as a new resource for quantum information. Using micro-fabricated silicon structures, we demonstrated the generation of quantum-correlated photon-phonon pairs, the generation and retrieval of single phonons, and the remote entanglement between two mechanical modes, paving the way for telecom-compatible optical quantum networks. Future directions of the work will also be discussed. Next, I will introduce a novel, hybrid optomechanical system consisting of optically levitated nanoparticles and micro-fabricated photonic crystal cavity. The system combines ultra-high mechanical quality of the levitated nanoparticle and strong optical transduction from the optical cavity. It thus will allow for quantum coherent experiments on particle’s motions even at room temperature. I will discuss the current status of the experiment as well as future plans of the work, particularly the matter-wave interferometry in an unexplored mass regime.

 

Contact: Yongseop Kang, Administration Team (T.2599)

 

Department of Physics

번호 날짜 장소 제목
353 2018-10-04 16:00  #1323, E6-2  Engineering light absorption in an ultrathin semiconductor metafilm file
352 2018-10-11 16:00  #1323, E6-2  Dirac electrons in a graphene quasicrystal file
351 2018-10-12 14:30  E6-2. 1st fl. #1323  Quantum Advantage in Learning Parity with Noise file
350 2018-10-12 16:00  E6-2. 1st fl. #1323  Direct observation of a two-dimensional hole gas at oxide interfaces file
349 2018-10-15 16:00  #1323, E6-2  Universal properties of macroscopic current-carrying systems file
348 2018-10-16 10:00  #1323, E6-2  Capturing protein cluster dynamics and gene expression output in live cells file
347 2018-10-18 10:00  #1323, E6-2  Understanding membrane protein folding using single-molecule force techniques file
346 2018-10-18 16:00  #1323, E6-2  Applications of nonlinear optics for condensed matter researches file
345 2018-10-19 10:00  #1323, E6-2  Energy conversion processes during magnetic reconnection in a laboratory plasma file
344 2018-10-24 10:30  E6-1, Lecture Room 1501(1F)  Photonic integration of next-generation clocks and Hertz-absolute-accuarcy optical frequenncy synthesizers file
343 2018-10-25 16:00  #1323, E6-2  Abelian and non-Abelian dark photons file
342 2018-10-26 16:00  #1323, E6-2  Coexisting triple-point and nodal-line topological magnons and thermal Hall effect in pyrochlore iridates file
341 2018-11-01 16:00  #1323, E6-2  Direct holography from a single snapshot file
340 2018-11-08 16:00  #1323, E6-2  Conformality lost file
339 2018-11-09 14:30  E6-2. 1st fl. #1323  Moiré superlattices – from twisted bilayer graphene to quasicrystal file
338 2018-11-09 16:00  E6-2. 1st fl. #1323  Quantum sensing and imaging with diamond defect centers for nano-scale spin physics file
337 2018-11-21 15:00  #1323, E6-2  Engineering topological quantum physics at the atomic scale file
336 2018-11-22 15:00  E6 Room(#1323)  Experimental and Computational Study on Physical Properties based on Granular System file
335 2018-11-23 15:00  E6-2. 2st fl. #2501  Entanglement string and Spin Liquid with Holographic duality file
334 2018-11-29 16:00  #1323, E6-2  양자 칸델라 실현을 위한 단일 광자 발생장치 개발 file