visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2018-04-13 10:00 
일시 April 13 (Fri.), 10am 
장소 #1323 (E6-2, 1st fl.) 
연사 Dr. Sungkun Hong 

Physics Seminar

 

Quantum meets Mechanics: from Quantum Information to Fundamental Research

 

Dr. Sungkun Hong

Vienna Center for Quantum Science and Technology, University of Vienna

 

April 13 (Fri.), 10am

#1323 (E6-2, 1st fl.)

 

 

Abstract:

Studying quantum aspects of macroscopic moving bodies is a new emerging field in quantum physics. The main experimental approach is cavity optomechanics, where photons in the cavity are used to measure and manipulate motional states of mechanical oscillators. Cavity optomechanics, together with advancements in microfabrication of mechanical devices, has allowed us to observe and control mechanical resonators at the quantum level. This opens new exciting possibilities for quantum information science and for studying quantum physics in hitherto untested macroscopic scales.

In this talk, I will describe two different quantum optomechanics experiments that I have been doing in Vienna. First, I will present our progress in utilizing on-chip optomechanical devices as a new resource for quantum information. Using micro-fabricated silicon structures, we demonstrated the generation of quantum-correlated photon-phonon pairs, the generation and retrieval of single phonons, and the remote entanglement between two mechanical modes, paving the way for telecom-compatible optical quantum networks. Future directions of the work will also be discussed. Next, I will introduce a novel, hybrid optomechanical system consisting of optically levitated nanoparticles and micro-fabricated photonic crystal cavity. The system combines ultra-high mechanical quality of the levitated nanoparticle and strong optical transduction from the optical cavity. It thus will allow for quantum coherent experiments on particle’s motions even at room temperature. I will discuss the current status of the experiment as well as future plans of the work, particularly the matter-wave interferometry in an unexplored mass regime.

 

Contact: Yongseop Kang, Administration Team (T.2599)

 

Department of Physics

번호 날짜 장소 제목
489 2018-05-31 16:00  #1323, E6-2  Dynamic control of optical properties with gated-graphene metamaterials file
488 2018-06-22 16:00  #1323, E6-2  Tuning functional properties of BiFeO3 films using strain and growth chemistry file
487 2018-06-22 16:00  #1323, E6-2  Tuning functional properties of BiFeO3 films using strain and growth chemistry file
486 2018-07-09 14:00  #1323, E6-2  The principles of collective learning file
485 2018-10-25 16:00  #1323, E6-2  Abelian and non-Abelian dark photons file
484 2018-10-26 16:00  #1323, E6-2  Coexisting triple-point and nodal-line topological magnons and thermal Hall effect in pyrochlore iridates file
483 2018-11-01 16:00  #1323, E6-2  Direct holography from a single snapshot file
482 2018-11-08 16:00  #1323, E6-2  Conformality lost file
481 2018-11-21 15:00  #1323, E6-2  Engineering topological quantum physics at the atomic scale file
480 2018-11-29 16:00  #1323, E6-2  양자 칸델라 실현을 위한 단일 광자 발생장치 개발 file
479 2019-04-04 16:00  #1323, E6-2  Chiral spin-photon interaction at nanoscale file
478 2019-04-11 16:00  #1323, E6-2  Massive screening for cathode active materials using deep neural network file
477 2019-04-19 11:00  #1323, E6-2  First-principles studies of semiconductors for solar cell applications file
476 2019-04-23 16:00  #1323, E6-2  From Mott physics to high-temperature superconductivity file
475 2019-04-26 16:00  #1323, E6-2  Robust Quantum Metrology using Strongly Interacting Spin Ensembles and Quantum Convolutional Neural Network file
474 2019-05-01 16:00  #1323, E6-2  Raman and x-ray scattering study on correlated electron systems: two case examples file
473 2019-05-02 16:00  #1323, E6-2  Anomalous optical properties of halide perovskites file
472 2019-05-08 16:00  E6 Room(#1323)  Imaging valley dependent electron transport in 2D semiconductors file
471 2019-05-09 16:00  #1323, E6-2  Quantum Optical Sensing Using Single Photons And Single Photon Emission from Single Emitters file
470 2019-05-09 16:00  #1323, E6-2  Quantum Optical Sensing Using Single Photons And Single Photon Emission from Single Emitters file