visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2018-04-13 10:00 
일시 April 13 (Fri.), 10am 
장소 #1323 (E6-2, 1st fl.) 
연사 Dr. Sungkun Hong 

Physics Seminar

 

Quantum meets Mechanics: from Quantum Information to Fundamental Research

 

Dr. Sungkun Hong

Vienna Center for Quantum Science and Technology, University of Vienna

 

April 13 (Fri.), 10am

#1323 (E6-2, 1st fl.)

 

 

Abstract:

Studying quantum aspects of macroscopic moving bodies is a new emerging field in quantum physics. The main experimental approach is cavity optomechanics, where photons in the cavity are used to measure and manipulate motional states of mechanical oscillators. Cavity optomechanics, together with advancements in microfabrication of mechanical devices, has allowed us to observe and control mechanical resonators at the quantum level. This opens new exciting possibilities for quantum information science and for studying quantum physics in hitherto untested macroscopic scales.

In this talk, I will describe two different quantum optomechanics experiments that I have been doing in Vienna. First, I will present our progress in utilizing on-chip optomechanical devices as a new resource for quantum information. Using micro-fabricated silicon structures, we demonstrated the generation of quantum-correlated photon-phonon pairs, the generation and retrieval of single phonons, and the remote entanglement between two mechanical modes, paving the way for telecom-compatible optical quantum networks. Future directions of the work will also be discussed. Next, I will introduce a novel, hybrid optomechanical system consisting of optically levitated nanoparticles and micro-fabricated photonic crystal cavity. The system combines ultra-high mechanical quality of the levitated nanoparticle and strong optical transduction from the optical cavity. It thus will allow for quantum coherent experiments on particle’s motions even at room temperature. I will discuss the current status of the experiment as well as future plans of the work, particularly the matter-wave interferometry in an unexplored mass regime.

 

Contact: Yongseop Kang, Administration Team (T.2599)

 

Department of Physics

번호 날짜 장소 제목
347 2015-12-03 16:00  E6-2, #1323  Hybrid solid state spin qubits in wide bandgap semiconductors
346 2022-06-10 16:00  E6-2. 1st fl. #1323  Fe5GeTe2의 나선형 자성특성과 자기저항의 전류밀도 의존성 연구 file
345 2017-03-24 16:00  #1323 (1st fl. E6-2)  Graphene based nano electronics and nano electromechanics; focusing on precise control of nano structures for studying accurate physical properties
344 2016-09-29 16:00  E6-2 #1323 (1st floor)  Large-scale Silicon Photonic MEMS Switches
343 2015-07-15 14:00  E6-2,1323  Electronic and optical properties of titanate-based oxide superlattices
342 2019-06-17 10:30  #1323, E6-2  Chiral Spintronics file
341 2019-04-19 16:00  E6-2. 1st fl. #1323  Graphene and hBN heterostructures file
340 2023-09-21 16:00  CAPP Seminar Room C303, Creation Hall, KAIST Munji Campus  [CAPP seminar] Axion Magnetic Resonance file
339 2023-10-11 16:00  E6-2, Rm2502  [High Energy Theory Seminar] Axion Magnetic Resonance
338 2016-01-26 14:00  E6-2, #1323  Electrochemistry on Nano- and Atomic Levels: Scanning Probe Microscopy Meets Deep Data
337 2019-03-29 14:30  E6-2. 1st fl. #1323  Epitaxial Multifunctional Oxide Thin Films for Novel Electronics file
336 2018-06-01 11:00  E6-2. 1st fl. #1323  Topological phases in low-dimensional quantum materials file
335 2019-10-29 16:00  #1323 (E6-2, 1st fl.)  Particles and Gravity via String Geometry file
334 2018-04-09 11:00  E6-2. 1st fl. #1323  Doublon-holon origin of the subpeaks at the Hubbard band edges file
333 2019-10-31 10:00  #1323 (E6-2, 1st fl.)  Kondo meets Hubbard: Impurity physics for correlated lattices file
332 2022-06-10 14:30  E6-2. 1st fl. #1323  Combinatorial strategy for condensed matter physics: study on rare earth hexaborides thin films file
331 2020-02-13 16:30  E6-6, #119  Enhanced Light-Matter Interactions in Graphene with Noble Metal Plasmonic Structures file
330 2019-11-20 16:00  #5302, E6-2  Correlation between superconducting transition temperature and critical current density in irradiated iron-based superconductors file
329 2019-11-05 16:00  #1323, E6-2  Study on nanomaterials by the development of ultrahigh resolution laser-photoelectron microscopy (PEEM) file
328 2021-12-03 14:30  Zoom webinar  Topological Spin Textures: Skyrmions and Beyond file