visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2018-04-09 11:00 
일시 Apr. 09 (Mon.), 11:00 AM 
장소 E6-2. 1st fl. #1323 
연사 Dr. Seung-Sup B. Lee 

SRC Seminar

 

 

Doublon-holon origin of the subpeaks at the Hubbard band edges

 

Dr. Seung-Sup B. Lee

Physics Department, LMU Munich

 

Apr. 09 (Mon.), 11:00 AM

E6-2. 1st fl. #1323

 

Abstract:

Dynamical mean-feld theory (DMFT) studies frequently observe a new structure in the local spectral function of the SU(2) Fermi-Hubbard model (i.e., one-band Hubbard model) at half _lling: In the metallic phase close to the Mott transition, subpeaks emerge at the inner edges of the Hubbard bands.

Here we demonstrate that these subpeaks originate from the low-energy e_ective interaction of doublon-holon pairs, by investigating how the correlation functions of doublon and holon operators contribute to the subpeaks [1, 2]. We use the numerical renormalization group (NRG) as a DMFT impurity solver to obtain the correlation functions on the real-frequency axis with improved spectral resolution [3]. A mean-_eld analysis of the low-energy e_ective Hamiltonian [2] provides results consistent with the numerical result.

The subpeaks are associated with a distinctive dispersion that is di_erent from those for quasiparticles and the Hubbard bands. Also, the subpeaks become more pronounced in the SU(N) Hubbard models for larger number N of particle avors, due to the increased degeneracy of doublon-holon pair excitations. Hence we expect that the sub-peaks can be observed in the photoemission spectroscopy experiments of multi-band materials or in the ultracold atom simulation of the SU(N) Hubbard models.

 

[1] S.-S. B. Lee, J. von Delft, and A. Weichselbaum, Phys. Rev. Lett. 119, 236402 (2017).

[2] S.-S. B. Lee, J. von Delft, and A. Weichselbaum, Phys. Rev. B 96, 245106 (2017).

[3] S.-S. B. Lee and A. Weichselbaum, Phys. Rev. B 94, 235127 (2016).

 

Contact: SunYoung Choi, (sunyoungchoi@kaist.ac.kr)

 

Center for Quantum Coherence in Condensed Matter, KAIST

번호 날짜 장소 제목
473 2016-04-08 13:30  E6-2. 1st fl. #1501  Theoretical Overview of Iron-based superconductors and its future
472 2016-04-08 16:00  E6-2. 5st fl. #1501  Spectroscopic studies of iron-based superconductors : what have we learned?
471 2016-04-12 16:00  E6-2. 1st fl. #1323  Confinement of Superconducting Vortices in Magnetic Force Microscopy
470 2016-04-18 15:30  KI빌딩(E4), 강의실 B501 (5F)  First Principles Approaches for Intermolecular Interactions: From Gas-Phase Dimers to Liquid Water and Molecular Crystal Polymorphism file
469 2016-04-19 14:00  #1323(E6-2. 1st fl.)  Nonlocal collisional electron transport in partially ionized plasma generation, structure, and stability
468 2016-04-26 16:00  #1323(1st Floor. E6-2)  Transport spectroscopy for electronic bands in carbon-based nanomaterials with weak-bond contacts
467 2016-04-28 15:00  #2501(E6-2. 2nd fl.)  Lattice/Spin/Charge Coupling in 5d Pyrochlore Cd2Os2O7
466 2016-05-11 16:00  E6-2. #1323(1st fl.)  The quest for novel high-temperature superconductors---Prospects and progress in iridates
465 2016-05-13 13:30  E6. #1501(1st fl.)  Aperiodic crystals in low dimensions
464 2016-05-13 16:00  E6. #1501(1st fl.)  Graphene analogue in (111)- BaBiO3 bilayer heterostructures for topological electronics
463 2016-05-16 16:00  #1323(E6-2, 1st Fl.)  Tuning microwave cavities with biased nonlinear dielectrics for axion searches
462 2016-05-17 11:00  창의학습관(E11), 406호  The CERN Resonant WISP Search: Development, Results and Lesson-Learned
461 2016-05-19 15:00  May 19, 2016 (Thur.) 3PM,  The CERN Resonant WISP Search: Development, Results and Lesson-Learned
460 2016-05-19 16:00  #1323(E6-2, 1st fl.)  Nonlinear/quantum optical effect in silicon nano-photonics
459 2016-05-24 16:00  E6-2. #1323(1st fl.)  Electronic and magnetic properties of 2D transition-metal thiophosphates and tunability of magnetic order with carrier density
458 2016-05-31 16:00  #1323(E6-2, 1st fl.)  Understanding 3D tokamak physics towards advanced control of toroidal plasma
457 2016-06-01 10:30  BK21 Conference Room (#1318, E6-2)  Welcome to Nature Photonics
456 2016-06-01 16:00  #1323(E6-2 1st fl.)  Laboratory experiments relevant to mesospheric clouds, Saturn’s rings & astrophysical jets
455 2016-06-14 15:00  #1323 (E6-2 1st fl.)  No-Insulation High Temperature Superconductor Magnet Technology for Compact, Reliable, and Low-Cost High Field DC Magnets
454 2016-06-14 16:00  Seminar Room (#2502, 2nd fl.)  Photonic quantum network based on multimode squeezed vacuums and single-photon subtraction