visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2018-03-16 16:00 
연사  
장소 E6-2. 1st fl. #1323 

Abstract:

van der Waals materials including graphene, hexagonal boron nitride and transition metal dichalcogenides (TMDCs) such as MoS2 and WSe2 have great potential for exploring the exotic quantum behaviors and realization of advanced optoelectronics devices. However, nature of 2D materials, extremely sensitive to extrinsic effects, hampered efforts to observe its intrinsic transport. Recently developed ‘van der Waals heterostructure device platform’ allows the atomically perfect interface, dramatic suppression of extrinsic scattering effects, resulting in the achievements of dramatic improvements in performance with long-term stability. Especially, hBN-encapsulation structure of TMDCs with multi-terminal with low contact resistance strategies enables the observation of intrinsic transports such as quantum oscillations and coupled spin-valley physics. Furthermore, van der Waals heterostructure offer an entirely new opportunity for exploring the emerging exotic quantum behaviors in two-dimension such as 2D superconductivity, charge density wave in NbSe2 and 1T-TaS2.

I will also talk about the van der Waals material based ultrafast optical optoelectronics. Especially, ultrafast light emitter in nanoscale is a critical component in the development of the high bandwidth on-chip optical interconnects for ubiquitous computing and Big data applications. However, previous technology faces the major challenges such as big footprint, high cost integration and difficulties of direct high speed electrical pumping. Here, I will talk the first electrically driven ultrafast graphene light emitter that exhibits the ultrafast light modulation up to ~ 4 GHz with broad optical bandwidth (400 ~ 1600 nm). Furthermore, atomically thin hexagonal boron nitride (hBN) encapsulation layers to graphene allow the stable and practical high performance even under the ambient condition as well as efficient direct electronic cooling via near-field coupling of hybrid plasmon-phonon polaritonic modes. Ultrafast and broadband graphene light emitter paves the way towards the realization of complete graphene-based ultrafast optical communications.

Contact: SunYoung Choi, (sunyoungchoi@kaist.ac.kr)

Center for Quantum Coherence in Condensed Matter, KAIST

 

Yongseop Kang (Mr.)

Manager, Administration Team of Department of Physics

Korea Advanced Institute of Science and Technology

Phone +82 (42) 350 2599

Cell phone +82 (10) 4288 6113

Email kangys@kaist.ac.kr

번호 날짜 연사 제목
공지 2025-02-24 16:00    2025년 봄학기 콜로키움 안내
공지 2025-02-27 16:00    2025년 봄 물리학과 특별세미나 (광학/응집물리 분야)
485 2024-03-20 16:00    [High-Energy Theory Seminar] Black hole states at finite N
484 2024-01-03 11:00    Interplay of Strong Correlations, Topology, and Disorder in 2D Quantum Matters
483 2023-09-13 16:00    [High Energy Theory Seminar] Cosmic Birefringence from Dark Photon
482 2022-06-23 11:00    JILA’s search for the electron’s Electric Dipole Moment (eEDM) to probe physics beyond the standard model file
481 2022-01-11 15:00    Ultrafast optical studies on CDW collective modes of the Weyl-CDW (TaSe4)2I file
480 2024-01-16 14:00    Dimer Physics and Superconductivity in La3Ni2O7
479 2020-02-20 16:00    Unconventional superconductivity in the locally non-centrosymmetric heavy-fermion CeRh2As2 file
478 2023-12-19 16:00    [High Energy Theory Seminar] Non-invertible symmetries, leptons, quarks, and why multiple generations
477 2022-12-13 11:00    Art of thin film engineering toward topological quantum computation file
476 2016-09-29 16:00    2016 Fall, Physics Seminar Serises file
475 2023-01-11 11:00    Directly proving magnetoelastic coupling in a soft ferromagnet using Lorentz 4D-STEM file
474 2021-11-02 16:00    Metrology of Band Topology via Resonant Inelastic X-ray Scattering file
473 2015-07-16 16:00    KAIST Physics Distinguished Lecture
472 2017-11-28 16:00    Physics after the lab and the desk: Your work in PRL file
471 2025-03-11 12:00  Rak-Kyeong Seong (UNIST)  The AI Revolution for Quantum Fields and Strings: A Case Study
470 2022-04-15 11:00    (응집물리 세미나) First-principles studies of polar oxides and their applications file
469 2017-04-27 16:00    반도체 양자점을 이용한 단광자 광원
468 2019-09-18 16:00    Exploring Synthetic Quantum Matter in Superconducting Circuits file
467 2019-07-25 16:00    Band topology of twisted bilayer graphene file
466 2015-10-16 16:00    Fluctuations of entropy production in partially masked electric circuits