“Berry phase and nonlinear response: photocurrent in noncentrosymmetric insulators and Weyl semimetals”
2017.08.31 11:52
장소 | #5318(E6-2. 5th fl.) |
---|---|
일시 | AUG. 31 (Thu.), 2 PM |
연사 | Prof. Hiroaki Ishizuka (The University of Tokyo) |
“Berry phase and nonlinear response: photocurrent in noncentrosymmetric insulators and Weyl semimetals”
Prof. Hiroaki Ishizuka (The University of Tokyo)
AUG. 31 (Thu.), 2 PM / #5318(E6-2. 5th fl.)
Berry phase is one of the important keywords to understand non-trivial quantum effects. In condensed matter physics, the Berry phase often shows up in transport phenomena (e.g., quantum and anomalous Hall effects) and is considered as a keyword to understand topological properties of non-interacting fermion systems. While most of such studies have focused on the equilibrium states or linear responses in close to the equilibrium, a recent study on the photogalvanic effects have pointed out the relation between the Berry phase and photogalvanic effects in noncentrosymmetric insulators where inter-band transitions take an essential role [1-3]; it is named shift current as it is related to the shift of the Wannier function. So far, however, no observable consequences that distinguish this phenomenon from the conventional mechanism is known. In this talk, we theoretically explored the basic properties of shift current focusing on the distinction between the conventional and shift current mechanisms.
To theoretically study the photocurrent, we employed a Keldysh Green’s function formalism combined with Floquet theory. Using a large size numerical calculation, we study how the photocurrent changes by the local excitation, i.e., when only a part of the system is irradiated by the light. We show that, for the shift current, the magnitude of the current does not depend on the position of the light [4]. This is in contrast to the conventional mechanism, where the photocurrent is expected to be larger at the edge of the sample while it is suppressed when the light is at the center. Such behavior is consistent with the photocurrent recently observed in a noncentrosymmetric organic solid [5].
In the latter half of the talk, we discuss the effect of Berry phase on the photocurrent in Weyl semimetals [6,7]. We show that the Berry phase associated with the Weyl nodes induce a similar phenomenon to the adiabatic pump, resulting in a dissipation-less photocurrent. We find that the photocurrent appears only with the circularly polarized lights. This mechanism may potentially explain the photocurrent observed in TaAs [8].
[1] W. Kraut and R. von Blatz, Phys. Rev. B 19, 1548 (1979); ibid. 23, 5590 (1981).
[2] J. E. Sipe and A. I. Shkrebtii, Phys. Rev. B 61, 5337 (2000).
[3] T. Morimoto and N. Nagaosa, Science Adv. 2, e1501524 (2016).
[4] H. Ishizuka and N. Nagaosa, New J. Phys. 19, 033015 (2017).
[5] M. Nakamura, et al., Nature Commun. 8, 281 (2017).
[6] H. Ishizuka et al., Phys. Rev. Lett. 117, 216601 (2016).
[7] H. Ishizuka et al., Phys. Rev. B 95, 245211 (2017).
[8] Q. Ma et al., preprint (arXiv: 1705.00690).
Contact: Eun Gook Moon, Physics Dept., (egmoon@kaist.ac.kr)
댓글 0
번호 | 일시 | 장소 | 연사 | 제목 |
---|---|---|---|---|
공지 | 2019/09/18 - 12/5 | Seminar Room #1323 | Prof. David Schuster and etc. | Fall 2019: Physics Seminar Serises |
공지 | 2019/09/02 - 12/09 | Seminar Room 1501 | 이호성 박사 (한국표준과학연구원) and etc. | Fall 2019: Physics Colloquium |
218 | November 1 (Thu.), 16:00 PM | #1323, E6-2 | Dr. KyeoReh Lee |
Direct holography from a single snapshot
![]() |
217 | 2015/07/16, 4PM | E6-2, 1318 | Dr. Kyunghan Hong(MIT) | Next-generation ultrafast laser technology for nonlinear optics and strong-field physics |
216 | October 26 (Fri.), 4:00 PM | #1323, E6-2 | Dr. Kyusung Hwang |
Coexisting triple-point and nodal-line topological magnons and thermal Hall effect in pyrochlore iridates
![]() |
215 | Mar. 24 (Fri.), 2:30 PM | #1323 (1st fl. E6-2). | Dr. MahnSoo Choi | Topological Dynamics |
214 | 2015/10/15, 10AM | E6-2, 5th fl. #5318 | Dr. Mark D. Bird (Florida State University) | Development of Large-Bore, High Field Magnets at the NHMFL |
213 | May 19, 2016 (Thur.) 3PM | May 19, 2016 (Thur.) 3PM, | Dr. Michael Betz, CERN | The CERN Resonant WISP Search: Development, Results and Lesson-Learned |
212 | Jul. 08 (Fri.) 11:00 AM | #1323(E6-2. 1st fl.) | Dr. Michael Lawler(Binghampton Univ. / Cornell Univ.) | Isostatic magnetism |
211 | 2015/11/23, 1:30PM | E6-2, #1323 | Dr. Michael Park (Stanford University) | What's Beyond the Standard Model? Lessons from Run I and what might come in Run II |
210 | Feb. 1 (Wed.), 2p.m. | #1323(E6-2. 1st fl.) | Dr. Michihisa Yamamoto, Department of Applied Physics, The University of Tokyo | Quantum electron optics using flying electrons |
209 | Sep. 10 (Tue.), 03:00 PM | E6-2. 1st fl. #1323 | Dr. Mikhail Kiselev |
Two-Stage Kondo Effect
![]() |
208 | Nov. 3 (Fri.), 2:30 PM | #1323 (1st fl., E6-2.) | Dr. MinChul Lee(Department of Applied Physics, Kyung Hee Univ.) |
Quantum Resistor-Capacitor Circuit with Majorana Edge States
![]() |
207 | July 30 (Tue), 4:00 PM | #1323, E6-2 | Dr. Mingu Kang |
Dirac fermions and flat bands in correlated kagome metals
![]() |
206 | Apr. 28 (Fri.), 04:00 PM | #1323 (E6-2. 1st fl.) | Dr. Minkyung Jung Research Institute, DGIST | Carbon nanotubes coupled to superconducting impedance matching circuits |
205 | Sep. 29 (Thu), 4:00 PM | E6-2. #2501(2nd fl.) | Dr. Minu Kim, Institute for Basic Science, Seoul National University | Exploring the phase diagram of BaBiO3: epic voyage of just another bad trip? |
204 | 3 PM, 12 Jun (Wed), 2019 | Rm# 1323, E6-2 | Dr. Minyoung You |
The relation between free and interacting fermionic SPT phases
![]() |
203 | April 26 (Tue), 4PM | #1323(1st Floor. E6-2) | Dr. Myung-Ho Bae, Korea Research Institute of Standards and Science | Transport spectroscopy for electronic bands in carbon-based nanomaterials with weak-bond contacts |
202 | May. 11 (Fri.), 04:00 PM | E6-2. 1st fl. #1323 | Dr. Nam Kim |
암페어 단위 재정의와 단전자 펌프 소자 개발
![]() |
201 | Jun. 1(Wed) 10:30 AM | BK21 Conference Room (#1318, E6-2) | Dr. Noriaki Horiuchi, Editor, Nature Photonics | Welcome to Nature Photonics |
200 | July 2. 2018 (Monday) 3:00 PM | Seminar Room (C303), Creation Hall (3F), KAIST Munji Campus | Dr. Peter Winter (Argonne National Laboratory) |
High Precision Magnetic Field Measurement for the Muon g-2 Experiment
![]() |
199 | 2015/10/16, 3PM | E6-2, 5th fl. #5318 | Dr. Pierre Pugnat , (CNRS-LNCMI) | High Magnetic Fields to Probe the sub-eV range of Particle/Astroparticle Physics - From the OSQAR experiments at CERN up to new perspectives at LNCMI-Grenoble |