visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나

Quantum electron optics using flying electrons

2017.01.26 23:43

Physics 조회 수:1663

장소 #1323(E6-2. 1st fl.) 
일시 Feb. 1 (Wed.), 2p.m. 
연사 Dr. Michihisa Yamamoto, Department of Applied Physics, The University of Tokyo 

Quantum electron optics using flying electrons

 

Dr. Michihisa Yamamoto, Department of Applied Physics, The University of Tokyo

Feb. 1 (Wed.), 2p.m.  #1323(E6-2. 1st fl.)

 

Abstract: Quantum electron optics is a field in which one manipulates quantum states of propagating electrons. Combined with technologies for confining and manipulating single electrons, it allows us to investigate the scattering and interference of electrons in a unit of a single electron. The necessary elements of quantum electron optics experiments include single electron beam splitter, phase shifter, Coulomb coupler, single electron source and detector, spin-orbit path and electron-pair splitter.

In this talk, we present development of some of these elements. The beam splitter and phase shifter are implemented in our original two-path interferometer [1-3]. This interferometer has been shown to be the only reliable system for the measurement of the transmission phase shift of electrons [4,5]. To suppress decoherence induced by the electron-electron interaction and enhance the interference visibility, we recently developed a two-path interferometer of depleted channels, where single electrons are injected by means of surface acoustic waves (SAWs). We also confirmed that a single electron in a static quantum dot (single electron source) can be adiabatically transferred into a SAW-driven moving quantum dot [6], a necessary ingredient for achieving the high interference visibility of a single flying electron.

Quantum electron optics also targets the manipulation of spins of flying single electrons. We found that the spin information of one or two electrons can be transferred between distant quantum dots, which work as the single electron source and detector, with the fidelity limited only by the spin flips prior to the spin transfer [7,8]. We also realized an electron-pair splitter that can be used to split spin-entangled electrons in a moving dot into different moving dots. Combined with single spin manipulation using the spin-orbit interaction (spin-orbit path) [9], this splitter should allow for Bell measurement of electron spins.

This work is in collaboration with S. Takada (now at Institut Neel), R. Ito and K. Watanabe at the University of Tokyo, B. Bertrand, S. Hermelin, T. Meunier, and C. Bäuerle at Institut Neel, and A. Ludwig and A. D. Wieck at Ruhr-Universität Bochum.

 

[1] M. Yamamoto et al., Nature Nano. 7, 247 (2012)..

[2] A. Aharony et al., New J. Phys. 16, 083015 (2014).

[3] T. Bautze et al., Phys. Rev. B 89, 125432 (2014).

[4] S. Takada et al., Phys. Rev. Lett. 113, 126601 (2014).

[5] S. Takada et al., Appl. Phys. Lett. 107, 063101 (2015).

[6] B. Bertrand et al., Nanotechnology 27, 204001 (2016).

[7] S. Hermelin et al., Nature 477, 435 (2011).

[8] B. Bertrand et al., Nature Nano. 11, 672 (2016).

[9] H. Sanada et al., Nature Phys. 9, 280 (2013).

 

Contact: SunYoung Choi, (sunyoungchoi@kaist.ac.kr)

 

 

Center for Quantum Coherence in Condensed Matter, KAIST

번호 일시 장소 연사 제목
218 Sep. 02(Fri) 4:00 PM  E6-2(1st fl) #1323  Dr. Yong-Joo Doh, Department of Physics and Photon Science, GIST  Quantum Electrical Transport in Topological Insulator Nanowires
217 October 15 (Mon.), 16:00 PM  #1323, E6-2  Dr. Yongjoo Baek  Universal properties of macroscopic current-carrying systems file
216 April 11 (Wed), 1:30pm  #1323 (E6-2, 1st fl.)  Dr. Yongsoo Yang  Probing 3D Structure and Physical Properties of Materials at the Single-Atom Level file
215 Jun. 10 (Fri.), 11:00 AM  Online seminar  Dr. Yoon Jang Chung(Laboratory for Physical Sciences, University of Maryland)  Record-quality two-dimensional electron systems file
214 May. 13 (Fri.), 04:00 PM  자연과학동(E6-2) 1st fl. #1323  Dr. Yosep Kim(Center for Quantum Information, KIST)  High-fidelity iToffoli gate for fixed-frequency superconducting qubits file
213 May. 12 (Fri.), 01:30 PM  E6-2. 1st fl. #1323  Dr. Young Kuk Kim  Topological Dirac insulator
212 April 11 (Wed), 4:00pm  #1323 (E6-2, 1st fl.)  Dr. Young-Sik Ra  Non-Gaussian states of multimode light generated via hybrid quantum information processing file
211 May 13 (Fri.), 1:30 PM  E6. #1501(1st fl.)  Dr. Young-Woo Son, Dept. of Physics, KIAS  Aperiodic crystals in low dimensions
210 Aug. 9 (Tue), 14:00 PM  KI building (E4), Lecture Room Red (B501)  Dr. YoungChan Kim (Quantum Biophotonics Group, University of Surrey, UK)  Quantum biology in fluorescent protein: a new model system to study quantum effects in biology file
209 Mar. 16 (Fri.), 04:0 PM  E6-2. 1st fl. #1323  Dr. YoungDuck Kim  Van der Waals Heterostructures from Quantum Transport to Ultrafast Optoelectronics file
208 2015/11/06, 4:30 PM  E6-2, #5318  Dr. Youngkuk Kim (University of Pennsylvania)  Topological Dirac line nodes in centrosymmetric semimetals
207 Apr. 19 (Fri.), 02:30 PM  E6-2. 1st fl. #1323  Dr. YoungWoo Nam  A family of finite-temperature electronic phase transitions in graphene multilayers file
206 Nov. 1 (Fri.), 02:30 PM  E6-2. 1st fl. #1323  Dr. YoungWook Kim  Squeezing the best out of 2D materials file
205 Sep. 26 (Tue.), 11AM  #1323 (E6-2. 1st fl.)  Dr. Yukiaki Ishida / ISSP, University of Tokyo  Time-resolved ARPES study of Dirac and topological materials
204 Apr. 08 (Fri.), 13:30 PM  E6-2. 1st fl. #1501  Dr. Yunkyu Bang, Chonnam National Univ.  Theoretical Overview of Iron-based superconductors and its future
203 June 28 (Fri.), 13:30 PM  #1323, E6-2  Dr. Yusuke Kozuka  Magnetic domains and domain wall conduction in pyrochlore iridate thin films and heterostructures file
202 Oct. 27th(Thu) 4PM  #1323(E6-2)  Dr. 이 강 희, KAIST, Mechnical Engineering  Terahertz Metal Optics
201 Nov. 18th (Fri) 10:30 a.m.  #5318(5th fl.)  Dr. 최 순 원, Havard University  Non-equilibrium many-body spin dynamics in diamond
200 May. 18(Wed), 4pm  E6-2. #1323 & Zoom  Dr.Heeyeon Kim (Rutgers University, Department of Physics and Astronomy)  Geometry, Algebra, and Quantum Field Theory
199 May. 19(Thu), 4pm  E6-2. #1323 & Zoom  Dr.Jay Hyun Jo (Yale University, Department of Physics)  Chasing Long Standing Neutrino Anomalies with MicroBooNE