visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나

Quantum electron optics using flying electrons

2017.01.26 23:43

Physics 조회 수:2842

날짜 2017-02-01 14:00 
일시 Feb. 1 (Wed.), 2p.m. 
장소 #1323(E6-2. 1st fl.) 
연사 Dr. Michihisa Yamamoto, Department of Applied Physics, The University of Tokyo 

Quantum electron optics using flying electrons

 

Dr. Michihisa Yamamoto, Department of Applied Physics, The University of Tokyo

Feb. 1 (Wed.), 2p.m.  #1323(E6-2. 1st fl.)

 

Abstract: Quantum electron optics is a field in which one manipulates quantum states of propagating electrons. Combined with technologies for confining and manipulating single electrons, it allows us to investigate the scattering and interference of electrons in a unit of a single electron. The necessary elements of quantum electron optics experiments include single electron beam splitter, phase shifter, Coulomb coupler, single electron source and detector, spin-orbit path and electron-pair splitter.

In this talk, we present development of some of these elements. The beam splitter and phase shifter are implemented in our original two-path interferometer [1-3]. This interferometer has been shown to be the only reliable system for the measurement of the transmission phase shift of electrons [4,5]. To suppress decoherence induced by the electron-electron interaction and enhance the interference visibility, we recently developed a two-path interferometer of depleted channels, where single electrons are injected by means of surface acoustic waves (SAWs). We also confirmed that a single electron in a static quantum dot (single electron source) can be adiabatically transferred into a SAW-driven moving quantum dot [6], a necessary ingredient for achieving the high interference visibility of a single flying electron.

Quantum electron optics also targets the manipulation of spins of flying single electrons. We found that the spin information of one or two electrons can be transferred between distant quantum dots, which work as the single electron source and detector, with the fidelity limited only by the spin flips prior to the spin transfer [7,8]. We also realized an electron-pair splitter that can be used to split spin-entangled electrons in a moving dot into different moving dots. Combined with single spin manipulation using the spin-orbit interaction (spin-orbit path) [9], this splitter should allow for Bell measurement of electron spins.

This work is in collaboration with S. Takada (now at Institut Neel), R. Ito and K. Watanabe at the University of Tokyo, B. Bertrand, S. Hermelin, T. Meunier, and C. Bäuerle at Institut Neel, and A. Ludwig and A. D. Wieck at Ruhr-Universität Bochum.

 

[1] M. Yamamoto et al., Nature Nano. 7, 247 (2012)..

[2] A. Aharony et al., New J. Phys. 16, 083015 (2014).

[3] T. Bautze et al., Phys. Rev. B 89, 125432 (2014).

[4] S. Takada et al., Phys. Rev. Lett. 113, 126601 (2014).

[5] S. Takada et al., Appl. Phys. Lett. 107, 063101 (2015).

[6] B. Bertrand et al., Nanotechnology 27, 204001 (2016).

[7] S. Hermelin et al., Nature 477, 435 (2011).

[8] B. Bertrand et al., Nature Nano. 11, 672 (2016).

[9] H. Sanada et al., Nature Phys. 9, 280 (2013).

 

Contact: SunYoung Choi, (sunyoungchoi@kaist.ac.kr)

 

 

Center for Quantum Coherence in Condensed Matter, KAIST

번호 날짜 장소 제목
302 2022-11-17 16:00  E6-2 #1323  (광학분야 세미나) Ultrastructural and Spectroscopic Studies by Super-Resolution Fluorescence Microscopy
301 2023-01-11 16:00  E6-2 #1323  Non-abelian anyons and graph gauge theory on a superconducting processor, Eun-Ah Kim (Cornell University/Ewha Womans University)
300 2024-01-24 15:00  E6-2 #1323  Determination of single molecule loading rate during mechanotransduction file
299 2023-05-12 11:00  E6-2 #1323  (응집물리 세미나)Interlayer conductivity and plasmon in weakly coupled layered systems
298 2022-09-22 16:00  E6-2 #1323  (광학분야 세미나) Quasi-particle-like optical vortices in magnetic materials
297 2023-04-14 12:00  E6-2 #1323  (응집물리 세미나)Exotic quantum phenomena in two-dimensional materials file
296 2023-01-11 11:00  E6-2 #1323  Directly proving magnetoelastic coupling in a soft ferromagnet using Lorentz 4D-STEM file
295 2023-01-12 14:40  E6-2 #1323  JILA 1D Wannier-Stark optical lattice clock file
294 2022-11-11 11:00  E6-2 #1323  [Update 세미나영상] (응집물리 세미나) Honeycomb oxide heterostructures for quantum spin liquid file
293 2023-03-17 11:00  E6-2 #1323  (응집물리 세미나)Operando electron microscopy investigation of domain dynamics in twisted van der Waals materials file
292 2023-05-18 16:00  E6-2 #1323  (광학분야 세미나)Dielectric metasurfaces for optimized optical system and spatial light modulators
291 2023-05-19 11:00  E6-2 #1323  (응집물리 세미나)Dipole condensations in Tilted Bose-Hubbard Chains
290 2022-10-27 16:00  E6-2 #1323  (광학분야 세미나) Cavity optomechanical systems for quantum transduction
289 2022-10-07 11:00  E6-2 #1323  [Update 세미나 영상] (응집물리 세미나) Competing orders in a vanadium-based kagome metal monolayer file
288 2023-09-07 12:00  E6-2 #1323  2023 가을학기 광학분야 및 응집물리 특별세미나 전체 일정 file
287 2023-05-26 11:00  E6-2 #1323  (응집물리 세미나)Spectral Analyses of Stochastic Charge Trapping in Oxide Heterostructures file
286 2022-09-23 11:00  E6-2 #1323  [Update 세미나 영상] (응집물리 세미나) Steady Floquet-Andreev states in graphene Josephson junctions file
285 2022-12-07 16:00  E6-2 #1323  (광학분야 세미나) Non-Hermitian physics and non-Hermitian singularity
284 2022-10-13 16:00  E6-2 #1323  (광학분야 세미나) Ultrafast Optics for Ultra-Precision Metrology and Realization of Flexible/Stretchable Laser-Induced-Graphene Electronics
283 2024-03-08 11:00  E6-2 #1323  2024 봄학기 광학분야 및 응집물리 특별세미나 전체 일정 file