visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2016-11-10 16:00 
일시 Nov. 10th(Thu) 4 p.m. 
장소 E6-2. #1323(1st fl.) 
연사 Prof. Min Seok Jang, Electrical Engineering, KAIST 

Low Dimensional Active Plasmonics and Electron Optics in Graphene

 

Nov. 10th(Thu) 4 p.m., E6-2. #1323(1st fl.)
Prof. Min Seok Jang, Electrical Engineering, KAIST

 

 

The field of plasmonics has been attracting wide interest because it has provided routes to guide and localize light at nanoscales by utilizing metals as its major building block. Meanwhile, graphene, a two-dimensional lattice of carbon atoms, has been regarded as a candidate material for future electronic applications owing to its remarkably high carrier mobility and superior thermal properties. Both research fields have been growing rapidly, but quite independently. However, a closer look reveals that there are actually numerous similarities between them, and it is possible to extract useful applications from these analogies. Even more interestingly, these research fields are recently overlapping to create a new field of research, namely graphene plasmonics, which offers a unique platform to dynamically modulate light with unprecedented spatial and temporal resolutions.

 

In this talk, I will present a few examples of these intertwined topics. First, I will introduce “rainbow trapping” structures, broadband plasmonic slow light systems composed of single or double negative materials, and clarify the mode-conversion mechanism and the light-trapping performance by analyzing the dispersion relation. I will then show that electrons in graphene exhibit photon-like dynamics and how this analogy between photonics and electronics can inspire to solve an interesting problem of electron backscattering in graphene field effect transistors. Finally, I will present how the surface plasmons in graphene can be harnessed to create infrared metasurfaces that have tunable optical properties including extreme light-matter interaction and macroscopic modulation of light absorption and thermal emission.

 

Contact: Contact: Min-kyo Seo, Physics Dept. (T.2517)

 

번호 날짜 장소 제목
313 2019-04-19 16:00  E6-2. 1st fl. #1323  Graphene and hBN heterostructures file
312 2019-04-23 16:00  #1323, E6-2  From Mott physics to high-temperature superconductivity file
311 2019-04-26 16:00  #1323, E6-2  Robust Quantum Metrology using Strongly Interacting Spin Ensembles and Quantum Convolutional Neural Network file
310 2019-05-01 16:00  #1323, E6-2  Raman and x-ray scattering study on correlated electron systems: two case examples file
309 2019-05-02 16:00  #1323, E6-2  Anomalous optical properties of halide perovskites file
308 2019-05-03 11:00  E6-2. 2st fl. #2502  Exotic Magnetism file
307 2019-05-08 16:00  E6 Room(#1323)  Imaging valley dependent electron transport in 2D semiconductors file
306 2019-05-09 16:00  #1323, E6-2  Quantum Optical Sensing Using Single Photons And Single Photon Emission from Single Emitters file
305 2019-05-21 16:00  #5318, E6-2  Classification of flat bands according to the band-crossing singularity of Bloch wave functions file
304 2019-05-24 16:00  #1323, E6-2  Infrared spectroscopy study on metal-insulator transitions in layered perovskite iridates file
303 2019-05-30 16:00  #1323, E6-2  Tuning the excitonic properties of semiconductors with light-matter interactions file
302 2019-05-31 11:00  #1323, E6-2  Cavity QED with Spin Qubits file
301 2019-06-04 17:00  #1323, E6-2  Stochastic nature of bacterial eradication using antibiotics file
300 2019-06-12 15:00  Rm# 1323, E6-2  The relation between free and interacting fermionic SPT phases file
299 2019-06-17 10:30  #1323, E6-2  Chiral Spintronics file
298 2019-06-24 11:00  E6-2, #1323  Topological photonic anomalies file
297 2019-06-27 14:00  #2502, E6-2  Gapless Kitaev Spin Liquid to Loop and String Gases file
296 2019-06-28 13:30  #1323, E6-2  Magnetic domains and domain wall conduction in pyrochlore iridate thin films and heterostructures file
295 2019-06-28 14:00  E6-2, #1322  1st Research-exchange meeting of computational material physics file
294 2019-07-03 15:00  E6-2, 2501  Many-body quantum electrodynamis (QED) with atoms and photons: A new platform for quantum optics" file