visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나

Large-scale Silicon Photonic MEMS Switches

2016.09.28 19:50

Physics 조회 수:239

장소 E6-2 #1323 (1st floor) 
일시 Sep. 29th(Thu), 4PM 
연사 Dr. Sangyoon Han, Department of Physics, KAIST 

Large-scale Silicon Photonic MEMS Switches


Sep. 29th(Thu), 4PM, E6-2 #1323 (1st floor)

Dr. Sangyoon Han, Department of Physics, KAIST

 

Abstract:

Fast optical-circuit-switches (OCS) having a large number of ports can significantly enhance the performance and the efficiency of modern data centers by actively rearranging network patterns. Commercially available optical switches operating with the use of moving mirror arrays have port counts exceeding 100x100 and insertion losses fewer than a few dBs. However, their switching speeds are typically tens-of-milliseconds which limits their applications in highly dynamic traffic patterns.

Recently, optical switches based on silicon photonics technology have been designed and built. Silicon photonic switches with microsecond or nanosecond response times have been demonstrated, and silicon photonic switches with integrated CMOS driving circuits have been demonstrated. However, the demonstrations were mostly limited to a small number of ports due to their cascaded 2x2 architecture which induces high optical losses as port-count increases. Moreover, the demonstrations were limited to single polarization operations, and narrow spectral bandwidths.

In this talk, I will introduce a new architecture for silicon photonic switches that is highly scalable (optical insertion loss < 1 dB regardless of port-count), polarization-insensitive (< 1dB of PDL), and ultra-broadband (~300nm). The new architecture uses a two-level waveguide-crossbar with moving waveguide couplers that configure light paths. Three experimental implementations of the new architecture with 50x50 ports will be shown in the talk.

 


Biography:

Sangyoon Han is a postdoctoral research associate in the Physics department at KAIST. He received his Ph.D. in Electrical Engineering and Computer Sciences from the University of California, Berkeley in 2016. He received his B.S. in Electrical Engineering from Seoul National University. He was a recipient of Korea Foundation for Advanced Studies Scholarship for study abroad, and he was a recipient of a graduate bronze medal from Collegiate Inventors Competition (USPTO sponsored) in 2015.

번호 일시 장소 연사 제목
공지 2019/09/18 - 12/5  Seminar Room #1323  Prof. David Schuster and etc.  Fall 2019: Physics Seminar Serises
공지 2019/09/02 - 12/09  Seminar Room 1501  이호성 박사 (한국표준과학연구원) and etc.  Fall 2019: Physics Colloquium
259 Sep. 10 (Tue.), 03:00 PM  E6-2. 1st fl. #1323  Dr. Mikhail Kiselev  Two-Stage Kondo Effect file
258 Sep. 02(Fri) 4:00 PM  E6-2(1st fl) #1323  Dr. Yong-Joo Doh, Department of Physics and Photon Science, GIST  Quantum Electrical Transport in Topological Insulator Nanowires
257 Sep. 02(Fri) 2:30 PM  E6-2(1st fl.), #1323  Dr. Yong-Hyun Kim,Graduate School of Nanoscience and Technology, KAIST  Nanoscale Thermal Physics: Seebeck Effect and Nanoscale Friction
256 October 4 (Thu.), 16:00 PM  #1323, E6-2  Prof. Soo Jin Kim  Engineering light absorption in an ultrathin semiconductor metafilm file
255 October 31 (Thu.), 10:00am  #1323 (E6-2, 1st fl.)  Dr. Seung-Sup Lee  Kondo meets Hubbard: Impurity physics for correlated lattices file
254 October 29 (Tue.), 4:00pm  #1323 (E6-2, 1st fl.)  Dr. Seung-Joo Lee  Particles and Gravity via String Geometry file
253 October 29 (Tue.), 14:30 PM  #1323, E6-2  Prof. Jörg Wrachtrup  Quantum sensing file
252 October 29 (Tue.), 10:00am  #1323 (E6-2, 1st fl.)  Prof. Se Kwon Kim  Unconventional Spin Transport in Quantum Materials file
251 October 26 (Fri.), 4:00 PM  #1323, E6-2  Dr. Kyusung Hwang  Coexisting triple-point and nodal-line topological magnons and thermal Hall effect in pyrochlore iridates file
250 October 25 (Thu.), 4:00 PM  #1323, E6-2  Dr. Gang Li  Abelian and non-Abelian dark photons file
249 October 24 (Wed.), 10:30 AM  E6-1, Lecture Room 1501(1F)  Prof. Kerry J. Vahala  Photonic integration of next-generation clocks and Hertz-absolute-accuarcy optical frequenncy synthesizers file
248 October 19 (Fri.), 10:00 AM  #1323, E6-2  Dr. Jongsoo Yoo  Energy conversion processes during magnetic reconnection in a laboratory plasma file
247 October 18 (Thu.), 16:00 PM  #1323, E6-2  Prof. Jongseok Lee  Applications of nonlinear optics for condensed matter researches file
246 October 18 (Thu.), 10:00 AM  #1323, E6-2  Dr. Duyoung Min  Understanding membrane protein folding using single-molecule force techniques file
245 October 17 (Thu.), 16:00 PM  #1323, E6-2  Prof. Namkyoo Park  Top down manipulation of Waves : From Metamaterials, Correlated Disorder, Quantum Analogy, to Digital Processing file
244 October 16 (Wed), 4:00pm  #1323 (E6-2, 1st fl.)  Dr. Jaewon Song  Emergent black holes and monopoles from quantum fields file
243 October 16 (Tue.), 10:00 AM  #1323, E6-2  Dr. Won-Ki Cho  Capturing protein cluster dynamics and gene expression output in live cells file
242 October 15 (Tue.), 16:00 PM  #1323, E6-2  Prof. Pilkyung Moon  Moiré superlattices and graphene quasicrystal file
241 October 15 (Mon.), 16:00 PM  #1323, E6-2  Dr. Yongjoo Baek  Universal properties of macroscopic current-carrying systems file
240 October 11 (Thu.), 16:00 PM  #1323, E6-2  Prof. Joung-Real Ahn  Dirac electrons in a graphene quasicrystal file