visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나

Isostatic magnetism

2016.07.04 22:02

Physics 조회 수:7899

날짜 2016-07-08 11:00 
연사  
장소 #1323(E6-2. 1st fl.) 

Isostatic magnetism

 

Jul. 08 (Fri.) 11:00 AM, #1323(E6-2. 1st fl.)
Dr. Michael Lawler(Binghampton Univ. / Cornell Univ.)

 

Abstract: Recently, a peculiar state of mechanical (phonon) systems, known as isostatic lattices, was both proposed[1] and fabricated as a metamaterial[2]. This state is on the brink of mechanical collapse and remarkably has special topological properties that guarantee the existence of soliton-like zero modes or edge modes with open boundary conditions. It is unlikely these topological phonons will be found in any solid state system since they are not on the brink of mechanical collapse. In this talk, I will discuss my group's research[3] into extending this physics to magnetic systems where ``mechanical collapse'' is replaced with the loss of magnetic order due to frustration.  I will prove mathematically that indeed an isostatic magnetic exists, a proof that remarkably employs a supersymmetry between magnons and an invented fermionic degree of freedom I have dubbed magninos. I will conclude with a discussion of the possibilities of finding an isostatic magnet among the kagome and distorted kagome families of antiferromagnets and the potential new phenomena that may be observed in such a material.


[1] C. L. Kane and T. C. Lubensky, "Topological boundary modes in isostatic lattices", Nature Physics 10, 39 (2013).
[2] B. G. Chen, N. Upadhyaya, V. Vitelli, "Non-linear conduction via solitons in a topological mechanical insulator", PNAS 111, 13004 (2014).
[3] M. J. Lawler "Supersymmetry protected phases of isostatic lattices and kagome antiferromagnets", Unpublished, see arXiv:1510.03697.


Contact: Eun Gook Moon, Physics Dept., (egmoon@kaist.ac.kr)

번호 날짜 연사 제목
공지 2025-02-24 16:00    2025년 봄학기 콜로키움 안내
공지 2025-02-27 16:00    2025년 봄 물리학과 특별세미나 (광학/응집물리 분야)
605 2010-02-14 16:00    Physics Colloquium - 2011 Spring file
604 2023-04-14 12:00    (응집물리 세미나)Exotic quantum phenomena in two-dimensional materials file
603 2023-05-12 11:00    (응집물리 세미나)Interlayer conductivity and plasmon in weakly coupled layered systems
602 2022-05-26 16:00    (광학분야 특별세미나)Topological photonic devices
601 2023-06-01 16:00    (광학분야 세미나)Quantum sensing using a squeezed light from hot Rb vapor
600 2015-03-09 16:00    Physics Colloquium : 2015 Spring file
599 2022-03-31 16:00    (광학분야 특별세미나)Ultrafast time-resolved spectroscopy in topological materials
598 2023-03-30 16:00    (광학분야 세미나)Scalable quantum entanglement in trapped-ions based quantum computer
597 2022-08-17 11:00    Robust Hamiltonian Engineering of Large Quantum Systems (큰 양자시스템의 견고한 해밀토니안 엔지니어링)
596 2010-02-08 16:00    Physics Ciolloquium : 2010 Spring file
595 2009-10-21 16:00    Interdimensional Universality of Dynamic Interfaces
594 2025-05-23 11:00  천상모 교수(한양대학교)  Superconductivity in Topological Materials file
593 2025-04-28 16:00  지명국 (연세대 천문우주학과)  Galaxy Cluster Collisions as Cosmic Laboratories for Dark Matter file
592 2010-09-06 16:00    Physics Colloquium : 2010 Fall file
591 2025-04-11 11:00  조상연 박사(Wellman Center for Photomedicine)  Semiconductor Nanolaser Particles: The Building Blocks of Next-Generation, Highly Multiplexed Photonic Systems file
590 2017-03-21 16:00    Spring 2017: Physics Seminar Serises file
589 2025-04-04 12:00  조길영 교수(KAIST)  Theoretical Kaleidoscope of Quantum Material Research: From Quantum Field Theory and Quantum Information to Future Devices file
588 2022-05-16 16:00    Design synthetic topological matter with atoms and lights
587 2020-10-15 16:00    Towards resource-efficient and fault-tolerant quantum computation with nonclassical light
586 2022-04-25 16:00    Ultrafast electron beam, a tool to explore the nanoscopic world of materials(우리말강의)