visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2016-06-16 16:00 
연사  
장소 #1323(E6-2, 1st fl.) 

“Quantum information processing using quantum dots and photonic crystal cavities”

 

Jun. 16 (Thu) 4PM, #1323(E6-2, 1st fl.)
Hyochul Kim, Samsung Advanced Institute of Technology

 

The ability to interface light with solid-state quantum bits (qubits) is essential for future development of scalable and compact quantum information systems that operate on ultra-fast timescales. Photons act as ideal carriers of quantum information and can serve as an efficient quantum link between matter qubits. Quantum dots (QDs) provide a promising implementation of a matter qubit, which can store quantum information in both excitonic states and highly stable spin states, providing an atom-like system in a semiconductor platform. By coupling these QDs to optical nano-cavities it becomes possible to achieve the strong coupling regime where a QD can modify the cavity spectral response, providing an efficient light-matter interface.
In this talk, I will explain that the qubit state of a photon can be controlled by a single solid-state qubit composed of a QD strongly coupled to a photonic crystal cavity.  The QD acts as a coherently controllable qubit system that conditionally flips the polarization of a photon reflected from the cavity on picosecond timescales, which implements a controlled NOT logic gate between the QD and the incident photon. Furthermore, the spin of a single electron or hole trapped in a charged QD can be used as a solid-state qubit with long coherence time. I will discuss our recent experimental realization of a quantum phase switch using a solid-state spin confined in a QD strongly coupled to a photonic crystal cavity, where the switch applies a spin-dependent phase shift on a photon.


Contact: Yoonsoo Kim (T.2599)

번호 날짜 연사 제목
공지 2025-02-24 16:00    2025년 봄학기 콜로키움 안내
공지 2025-02-27 16:00    2025년 봄 물리학과 특별세미나 (광학/응집물리 분야)
505 2022-01-26 13:00    An Introduction to Cohomology groups file
504 2018-10-12 16:00    Direct observation of a two-dimensional hole gas at oxide interfaces file
503 2022-11-18 14:30    Kondo cloud condensation in a highly-doped semiconductor metal file
502 2025-05-01 16:00  Dr. Inwook Kim (Lawrence Livermore National Laboratory)  BSM Physics Search with Quantum Sensors file
501 2018-12-26 16:00    Brane-like defect in 3D toric code file
500 2019-07-31 16:00    Features of ballistic superconducting graphene file
499 2018-07-12 17:00    The MilliQan Experiment: Search for Milli-Charged Particles at the LHC
498 2016-12-09 13:30    Entanglement area law in strongly-correlated systems
497 2023-11-23 16:00    Deciphering the Enigma of Quantum Materials by X-ray Scattering and Spectroscopy
496 2019-10-16 16:00    Emergent black holes and monopoles from quantum fields file
495 2022-07-14 13:30    Electronic structure and anomalous transport properties of topological materials by first principle calculation
494 2016-11-24 16:00    Harmonic oscillator physics with single atoms in a state-selective optical potential
493 2015-09-07 15:00    Advanced Optical Materials and Devices at NRL
492 2021-05-14 16:00    Spatial and temporal separation of environmental dephasing sources from solid-state quantum emitters file
491 2016-04-12 16:00    Confinement of Superconducting Vortices in Magnetic Force Microscopy
490 2017-04-28 14:30    Hot electron generation at surfaces and its impact to catalysis and renewable energy conversion
489 2015-12-11 15:45    Dynamical mean field theory studies on heavy fermion system
488 2023-10-19 11:00    Emergent functionalities of iridium oxide films with different growth orientation file
487 2023-06-26 11:00    Quantum computing on magnetic racetracks with flying domain wall qubits
486 2019-04-19 11:00    First-principles studies of semiconductors for solar cell applications file