visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2016-05-24 16:00 
일시 May 24 (Tue) 4 PM 
장소 E6-2. #1323(1st fl.) 
연사 Dr. Euyheon Hwang, SKKU Advanced Institute of Nanotechnology, Sung Kyung Kwan University 

Electronic and magnetic properties of 2D transition-metal thiophosphates and tunability of magnetic order with carrier density

 

May 24 (Tue) 4 PM, E6-2. #1323(1st fl.)
Dr. Euyheon Hwang, SKKU Advanced Institute of Nanotechnology, Sung Kyung Kwan University

 

We present the electronic and magnetic properties of two dimensional (2D) MPX3 (M= transition metal, and X = S, Se, Te) transition metal thiophosphates. The MPX3 are layered van der Waals materials and exhibit novel magnetic order as a single layer. Our calculations of the magnetic ground states in MPX3 single layer compounds predict semiconducting phases with variable band gap sizes down to metallic phases depending on their magnetic orders. A systematic trend of decreasing band gaps in antiferromagnetic states is observed as the chalcogen atoms S, Se, and Te change from smaller to larger atomic number, whereas diverse ground-state phases, e.g., ferromagnetic, antiferromagnetic, and nonmagnetic phases can be expected for different compounds which are accompanied by variations in the lattice constants, and non-negligible distortions in crystal symmetries. In addition, the antiferromagnetic semiconductors of MPX3 single layer show the transition to the ferromagnetic halfmetals with both electron and hole doping, which can be controlled by applying an external gate voltage in the MPX3 field effect transistors (FET). We find that the itinerant d electrons in transition metals induce the ferromagnetic to antiferromagnetic transition accompanied by the metal to semiconductor transition. The sensitive interdependence between the magnetic, structural, and electronic properties suggest important potential of 2D magnetic van der Waals materials for strain and field-effect carrier tunable spintronics.

 

Contact: Sungjae Cho, Physics Dept., (sungjae.cho@kaist.ac.kr)

번호 날짜 장소 제목
364 2022-12-20 16:00  E6-2. #2501  Getting into Biology and Medicine as Physicist
363 2016-05-11 16:00  E6-2. #1323(1st fl.)  The quest for novel high-temperature superconductors---Prospects and progress in iridates
362 2016-10-07 16:00  E6-2. #1323(1st fl.)  “Tilt engineering of 4d and 5d transition metal oxides?”
361 2016-11-10 16:00  E6-2. #1323(1st fl.)  Low Dimensional Active Plasmonics and Electron Optics in Graphene
360 2016-11-04 13:30  E6-2. #1323(1st fl.)  Exotic phenomena at oxide LaAlO3/SrTiO3 hetero-interface and their applications
» 2016-05-24 16:00  E6-2. #1323(1st fl.)  Electronic and magnetic properties of 2D transition-metal thiophosphates and tunability of magnetic order with carrier density
358 2016-11-04 15:00  E6-2. #1323(1st fl.)  Quantum information experiments using few electron spins in semiconductors
357 2016-10-07 13:30  E6-2. #1323(1st fl.)  “Symmetry and topology in transition metal dichalcogenide?”
356 2022-05-12 16:00  E6-2. #1323 & Zoom  New frontiers of electroweak physics at the LHC
355 2022-05-18 16:00  E6-2. #1323 & Zoom  Geometry, Algebra, and Quantum Field Theory
354 2022-05-19 16:00  E6-2. #1323 & Zoom  Chasing Long Standing Neutrino Anomalies with MicroBooNE
353 2022-05-11 16:00  E6-2. #1323 & Zoom  Gravity as a phenomenon in quantum dynamics
352 2023-06-22 16:00  E6-2,1323  [High Energy Physics Seminar] The Branes Behind Generalized Symmetry Operators
351 2015-07-15 14:00  E6-2,1323  Electronic and optical properties of titanate-based oxide superlattices
350 2019-12-27 15:00  E6-2,#5318  The superconducting order parameter puzzle of Sr2RuO4 file
349 2023-11-08 10:00  E6-2,#2502 & zoom  [High Energy Theory seminar] The Vacuum Sector of Asymptotically Isometric Codes
348 2019-07-21 12:00  E6-2,# 5318  Challenges and Opportunities in Theoretical Particle Physics 2019 file
347 2023-10-11 16:00  E6-2, Rm2502  [High Energy Theory Seminar] Axion Magnetic Resonance
346 2023-12-08 10:30  E6-2, Rm#2502  Novel transport phenomena in insulators
345 2024-04-11 16:00  E6-2, Rm#1323  Theoretical Studies of the Electric Field Induced Thermal Hall Effect in the Quantum Dimer Magnets XCuCl3 (X = Tl, K)