visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2016-04-19 14:00 
일시 Apr. 19(Tue.), 2PM 
장소 #1323(E6-2. 1st fl.) 
연사 Prof. Mark Koepke, Department of Physics and Astronomy, West Virginia University, USA 

Nonlocal collisional electron transport in partially ionized plasma generation, structure, and stability

 

Apr. 19(Tue.), 2PM, #1323(E6-2. 1st fl.)
Prof. Mark Koepke, Department of Physics and Astronomy, West Virginia University, USA

 

The local plasma generation, structure, and stability at one location and time can be unexpectedly influenced by “nonlocal” electron transport and heating effects attributed to conditions, processes, and boundaries many energy-relaxation scale lengths away in another part of the plasma. Nonlocal effects are attributed to electric-field sampling by a traversing electron across disparate regional plasma conditions when the electron energy relaxation length is larger than or comparable to the scale length of plasma inhomogeneity. As a result, the entire electric-field profile, including sheaths, striations, and filamentation, rather than the local electric field strength, determines spatiotemporal electron current and heating, even in collisional plasma. Non-equilibrium, nonlocal properties make partially ionized plasma, which is strongly affected also by the presence of neutral species, a solid surface, particulates, or a liquid, a remarkable tool for manufacturing (of semiconductor chips, solar and plasma-display panels, and plasma sources for particle beams), for the treatment of organic and bio-objects/materials, and for nanotechnology. A promising approach for improved control of the local quantities plasma density, electron temperature, and electron and ion energy distribution functions (EEDF, IEDF) exploits the peculiarities of nonlocal effects on these characteristic plasma parameters. Nonlocal collisional electron transport effects are important for understanding and applying atmospheric-pressure plasma jets, micro-discharges, and low pressure plasma discharges not only to the pursuit of the discovery plasma frontier but also to technology used everyday.

번호 날짜 장소 제목
364 2022-04-25 16:00  E6, #1501  Ultrafast electron beam, a tool to explore the nanoscopic world of materials(우리말강의)
363 2022-02-28 16:00  E6, #1501  Spin-based training of optical microscopes
362 2022-03-14 16:00  E6, #1501  Quantitative phase imaging and artificial intelligence: label-free 3D imaging, classification, and inference
361 2022-04-11 16:00  E6, #1501  Emergence of Statistical Mechanics in Quantum Systems
360 2022-05-02 16:00  E6, #1501  What can we learn from the history of science and technology?(우리말강의)
359 2022-05-23 16:00  E6, #1501  Novel electronic transport in topological van der Waals magnets
358 2022-05-09 16:00  E6, #1501  Searching for new electronic properties in correlated material flatland
357 2022-04-04- 16:00  E6, #1501  New paradigms in Quantum Field Theory
356 2022-05-16 16:00  E6, #1501  Design synthetic topological matter with atoms and lights
355 2022-05-30 16:00  E6, #1501  Light manipulation using 2D layered semiconductors
354 2015-10-23 10:30  E6, #1501  How to write a good scientific paper[Open lecture series]
353 2024-03-28 11:00  E6, #2501  Geometric characterization of thermoelectric performance of two-dimensional quadratic band-crossing semimetals
352 2016-03-07 16:00  E6, 1501  Physics Colloquium : 2016 Spring file
351 2015-09-07 16:00  E6, 1501  Physics Colloquium : 2015 Fall file
350 2015-03-09 16:00  E6, 1501  Physics Colloquium : 2015 Spring file
349 2015-09-15 16:00  E6, 1501  Physics Colloquium : 2014 Fall file
348 2014-03-10 16:00  E6, 1501  Physics Colloquium : 2014 Spring file
347 2013-09-09 16:00  E6, 1501  Physics Colloquium : 2013 Fall
346 2013-03-11 16:00  E6, 1501  Physics Colloquium : 2013 Spring
345 2012-04-02 16:00  E6, 1501  A new route to ferroelectricity in magnetic spinels: a case of Co2MnO4