visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2016-01-26 14:00 
일시 2016/1/26, 2PM 
장소 E6-2, #1323 
연사 Dr. Sergei V. Kalinin (Center for Nanophase Materials Sciences, Oak Ridge National Laboratory) 

Electrochemistry on Nano- and Atomic Levels: Scanning Probe Microscopy Meets Deep Data

 

Jan. 26 (Tue), 2PM,  E6-2. #1323
Dr. Sergei V. Kalinin,  Center for Nanophase Materials Sciences, Oak Ridge National Laboratory

 

Structural and electronic properties of oxide surfaces control their physical functionalities and electrocatalytic activity, and are currently of interest for energy generation and storage applications. In this presentation, I will discuss several examples of high-resolution studies of the electronic and electrochemical properties of oxide surfaces enabled by multidimensional scanning probe microscopies. On the mesoscopic scale, combination of strain- and current sensitive scanning probe microscopies allows to build nanometer-scale maps of local reversible and irreversible electrochemical activities. The use of multivariate statistical methods allows separating the complex multidimensional data sets into statistically significant components which in certain cases can be mapped onto individual physical mechanisms. I will further discuss the use of in-situ Pulsed Laser Deposition growth combined with atomic resolution Scanning Tunneling Microscopy and Spectroscopy to explore surface structures and electrochemical reactivity of oxides on the atomic scale. For SrRuO3, we directly observe multiple surface reconstructions and link these to the metal-insulator transitions as ascertained by UPS methods. On LaxCa1-xMnO3, we demonstrate strong termination dependence of electronic properties and presence of disordered oxygen ad-atoms. The growth dynamics and surface terminations of these films are discussed, along with single-atom electrochemistry experiments performed by STM. Finally, I explore the opportunities for atomically-resolved imaging and property data mining of functional oxides extending beyond classical order parameter descriptions, and giving rise to the deep data analysis in materials research. 
This research is supported by the by the U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division, and was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, BES DOE.

 

Contact: Chan-Ho Yang, Physics Dept., (chyang@kaist.ac.kr)

번호 날짜 장소 제목
529 2010-02-14 16:00  E6, 1501  Physics Colloquium - 2011 Spring file
528 2023-04-14 12:00  E6-2 #1323  (응집물리 세미나)Exotic quantum phenomena in two-dimensional materials file
527 2023-05-12 11:00  E6-2 #1323  (응집물리 세미나)Interlayer conductivity and plasmon in weakly coupled layered systems
526 2022-05-26 16:00  E6 1323  (광학분야 특별세미나)Topological photonic devices
525 2023-06-01 16:00  E6-2 #1323  (광학분야 세미나)Quantum sensing using a squeezed light from hot Rb vapor
524 2015-03-09 16:00  E6, 1501  Physics Colloquium : 2015 Spring file
523 2022-03-31 16:00  online  (광학분야 특별세미나)Ultrafast time-resolved spectroscopy in topological materials
522 2023-03-30 16:00  E6-2 #1323  (광학분야 세미나)Scalable quantum entanglement in trapped-ions based quantum computer
521 2022-08-17 11:00  E6-6 #118호  Robust Hamiltonian Engineering of Large Quantum Systems (큰 양자시스템의 견고한 해밀토니안 엔지니어링)
520 2010-02-08 16:00  E6, 1501  Physics Ciolloquium : 2010 Spring file
519 2009-10-21 16:00  E6, 1501  Interdimensional Universality of Dynamic Interfaces
518 2010-09-06 16:00  E6, 1501  Physics Colloquium : 2010 Fall file
517 2017-03-21 16:00  Seminar Room 1323  Spring 2017: Physics Seminar Serises file
516 2022-05-16 16:00  E6, #1501  Design synthetic topological matter with atoms and lights
515 2020-10-15 16:00  (https://kaist.zoom.us/j/93997220310)  Towards resource-efficient and fault-tolerant quantum computation with nonclassical light
514 2022-04-25 16:00  E6, #1501  Ultrafast electron beam, a tool to explore the nanoscopic world of materials(우리말강의)
513 2017-12-13 13:30  자연과학동 대형강의실 (1501호)  KAIST-KIAS Joint Workshop in Theoretical Sciences 개최 file
512 2019-05-21 16:00  #5318, E6-2  Classification of flat bands according to the band-crossing singularity of Bloch wave functions file
511 2019-09-02 16:00  Seminar Room 1501  Fall 2019: Physics Colloquium file
510 2023-05-26 11:00  E6-2 #1323  (응집물리 세미나)Spectral Analyses of Stochastic Charge Trapping in Oxide Heterostructures file