visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2015-11-24 16:00 
일시 2015/11/24, 4PM 
장소 E6-2, #1323 
연사 Dr. Kab-Jin Kim (Institute for Chemical Research, Kyoto University, Japan) 

Topology-based understanding of spin dynamics in inhomogeneously magnetized systems

 

Nov. 24 (TUE), 4:00 p.m. , Seminar Room(#1323)

Dr. Kab-Jin Kim, Institute for Chemical Research, Kyoto University(apan)

 

The advance of modern magnetism and spintronics mostly rely on the understanding of spin dynamics in various systems. In particular, spin dynamics in inhomogeneously magnetized systems has received significant attention because of the academic interest it inspires, as well as its potential applications in data storage and logic devices. A magnetic domain wall (DW), the boundary of two magnetic domains having different magnetic orientation, is a representative system showing an inhomogeneous spin configuration. Due to the non-uniform spin structure, the DW generally exhibits unique dynamic behaviors upon external forces. An in-depth understanding of the dynamics of DW not only promotes the progress the DW study but also opens a new avenue in spintronic research. For example, several intriguing physics such as spin transfer torque and spin orbit torque have been uncovered via the DW dynamics study in the past decade, and these new findings now opens a new research field, namely the spin-orbitronics.

This talk will review the progress of magnetic DW study and its contribution to the spintronics field. Then, a recent experimental result on the topology-based spin dynamics will be discussed.

 

Contact: Yoonsoo Kim, Administration Office.  Tel. 2599

번호 날짜 장소 제목
319 2022-11-11 11:00  E6-2 #1323  [Update 세미나영상] (응집물리 세미나) Honeycomb oxide heterostructures for quantum spin liquid file
318 2022-11-25 11:00  E6-2 #1323  [Update 세미나영상](응집물리 세미나) DMFT+ NRG: From models to real materials, from local to nonlocal correlations file
317 2022-12-09 11:00  E6-2 #1323  [Update 세미나영상](응집물리 세미나) Single-shot measurements of strongly-correlated artificial molecular levels in semiconductor quantum dots file
316 2022-09-22 16:00  E6-2 #1323  (광학분야 세미나) Quasi-particle-like optical vortices in magnetic materials
315 2022-09-29 16:00  E6-2 #1323  (광학분야 세미나) Ultrafast THz Field-Induced Nonlinear Optics
314 2022-10-13 16:00  E6-2 #1323  (광학분야 세미나) Ultrafast Optics for Ultra-Precision Metrology and Realization of Flexible/Stretchable Laser-Induced-Graphene Electronics
313 2022-10-27 16:00  E6-2 #1323  (광학분야 세미나) Cavity optomechanical systems for quantum transduction
312 2022-11-03 16:00  E6-2 #1323  (광학분야 세미나) Single-photon emission from low-dimensional materials
311 2022-11-17 16:00  E6-2 #1323  (광학분야 세미나) Ultrastructural and Spectroscopic Studies by Super-Resolution Fluorescence Microscopy
310 2022-12-07 16:00  E6-2 #1323  (광학분야 세미나) Non-Hermitian physics and non-Hermitian singularity
309 2023-01-11 11:00  E6-2 #1323  Directly proving magnetoelastic coupling in a soft ferromagnet using Lorentz 4D-STEM file
308 2023-01-09 16:00  E6-2 #1323  Non-Hermitian Hopf-bundle Matter. Moon Jip Park (IBS-PCS)
307 2023-01-10 16:00  E6-2 #1323  Terahertz Spectroscopy of Quantum Materials, Jae Hoon Kim (Yonsei University)
306 2023-01-11 16:00  E6-2 #1323  Non-abelian anyons and graph gauge theory on a superconducting processor, Eun-Ah Kim (Cornell University/Ewha Womans University)
305 2023-01-12 16:00  E6-2 #1323  Spin wavepackets in the Kagome ferromagnet Fe3Sn2: propagation and precursors
304 2023-01-12 14:40  E6-2 #1323  JILA 1D Wannier-Stark optical lattice clock file
303 2023-03-16 16:00  E6-2 #1323  2023 봄학기 광학분야 및 응집물리 특별세미나 전체 일정 file
302 2023-03-16 16:00  E6-2 #1323  (광학분야 세미나) Investigation of 3D cell mechanics using refractive-index tomography
301 2023-03-30 16:00  E6-2 #1323  (광학분야 세미나)Scalable quantum entanglement in trapped-ions based quantum computer
300 2023-04-06 16:00  E6-2 #1323  (광학분야 세미나)Nanophotonics-based approaches to explore Berry physics