visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2015-10-15 10:00 
일시 2015/10/15, 10AM 
장소 E6-2, 5th fl. #5318 
연사 Dr. Mark D. Bird (Florida State University) 

Development of Large-Bore, High Field Magnets at the NHMFL

2015/10/15(Thurs) 10AM, E6-2, (RM)#5318
Dr. Mark D. Bird , Florida State University


The National High Magnetic Field Laboratory (MagLab) provides themost intense dc and pulsed magnetic fields worldwide for a variety of types of experiments in physics, chemistry, biology and other sciences. 

The MagLab includes 7 user facilities: 

1) Pulsed magnets up to 101 T for ~10 ms, 

2) dc powered magnets up to 45 T, 

3) high-resolution NMR magnets up to 21.1 T, 

4) MRI magnets up to 21 T for rodents, 

5) Ion-Cyclotron Resonance magnets up to 21 T, 

as well as 6) ultra-high ratios o field to temperature including 15 T at 0.4 mK. 

Presently the MagLab is one of the leading labs worldwide developingultra-high field dc magnets using high-temperature superconductors (HTS). 

As early as 2008 an HTS test coil at the MagLab reached 35 T (4 T HTS coil inside 31 T resistive magnet). Quench protection systems that can be scaled to real user magnets were first demonstrated in 2011. 

Individual HTS coils have been intentionally quenched up to 80 times without degradation. In 2015 a 27 T all-superconducting magnet was tested as well as testing of prototype coils 

for a 32 T all-superconducting user magnet was completed. The 32 T system should be open to external users in 2016. 

Magnet Technology based on HTS materials could be used in the development of Axion Detectors, providing a unique combination of field and bore for the search for dark matter. 

 

Contact: CAPP Administraion Office(350-8166) 

번호 날짜 장소 제목
410 2017-09-22 16:00  E6-2. 1st fl. #1323  Unexpected Electron-Pairing in Integer Quantum Hall Effect file
409 2018-11-09 16:00  E6-2. 1st fl. #1323  Quantum sensing and imaging with diamond defect centers for nano-scale spin physics file
408 2018-05-17 13:30  E6-2. 1st fl. #1323  Quantum Spin Liquid in Kitaev Materials file
407 2018-12-27 16:00  E6-2. 1st fl. #1323  Quantum Innovation (QuIN) Laboratory file
406 2018-11-09 14:30  E6-2. 1st fl. #1323  Moiré superlattices – from twisted bilayer graphene to quasicrystal file
405 2017-04-28 14:30  E6-2. 1st fl. #1323  Hot electron generation at surfaces and its impact to catalysis and renewable energy conversion
404 2016-04-12 16:00  E6-2. 1st fl. #1323  Confinement of Superconducting Vortices in Magnetic Force Microscopy
403 2018-12-11 16:00  E6-2. 1st fl. #1323  Natural compact representation of Matsubara Green’s functions: applications to analytic continuation and quantum many-body simulations file
402 2016-10-18 15:00  E6-2. 1st fl. #1323  “Hybrid quantum systems with mechanical oscillators”
401 2018-10-12 14:30  E6-2. 1st fl. #1323  Quantum Advantage in Learning Parity with Noise file
400 2017-09-22 13:00  E6-2. 1st fl. #1323  Superconductor-metal-insulator transition in thin Tantalum films file
399 2019-11-01 16:00  E6-2. 1st fl. #1323  Electron transport through weak-bonded contact metal with low dimensional nano-material file
398 2019-09-27 14:30  E6-2. 1st fl. #1323  Spin-charge conversion in topological insulators for spintronic applications file
397 2017-05-12 13:30  E6-2. 1st fl. #1323  Topological Dirac insulator
396 2017-09-22 14:30  E6-2. 1st fl. #1323  Quantum Electronic Transport in Graphene Hybrid Nanostructures file
395 2018-03-16 16:00  E6-2. 1st fl. #1323  Van der Waals Heterostructures from Quantum Transport to Ultrafast Optoelectronics file
394 2018-03-16 16:00  E6-2. 1st fl. #1323  Van der Waals Heterostructures from Quantum Transport to Ultrafast Optoelectronics file
393 2019-03-29 16:00  E6-2. 1st fl. #1323  Coherent Quantum Control and Magnetism on atoms – Trapped ion and ESR STM file
392 2019-04-19 16:00  E6-2. 1st fl. #1323  Graphene and hBN heterostructures file
391 2019-04-19 14:30  E6-2. 1st fl. #1323  A family of finite-temperature electronic phase transitions in graphene multilayers file