• HOME
  • >
  • 소식
  • >
  • 세미나
장소 B501, Room Red, KI bldg. 5nd fl. 
일시 2015/08/04, 11PM 
연사 Dr. Eric Jin Ser Lee(Univ. of Manitoba, Canada) 

Propagation of ultrasound through two- and three-dimensional strongly scattering media

2015/08/04(TUE), 11PM, B501(Room Red, KI bldg. 5nd fl.)
Dr. Eric Jin Ser Lee,  Department of Physics and Astronomy, Univ. of Manitoba, Canada



During my Ph. D study at the University of Manitoba, I have investigated the propagation of ultrasound through two- and three-dimensional strongly scattering media, with either random or ordered internal structures, through experiments and finite element simulations.  All media investigated have strong scattering resonances, leading to novel transport behaviour. 


The two-dimensional samples consist of nylon rods immersed in water.  Nylon fishing lines under tension are used as two-dimensional scatterers.  Note that since the rods are parallel and of uniform diameter, there is negligible scattering of waves out of the plane perpendicular to the rods, so that the system appears two-dimensional from the wave point of view for propagation in this plane.  When nylon rods are surrounded by water, they exhibit strong scattering resonances.  In such an environment, the nylon scattering resonance can couple with the propagating mode through water to create a bandgap.  This is a called hybridization gap.  When the nylon rods are arranged in a triangular lattice to form two-dimensional phononic crystals, very unusual dispersion properties are observed when the lattice constant is adjusted so that Bragg and hybridization gaps overlap in frequency.  This behaviour is attributed to the competition between two co-existing propagating modes, leading to a new method for tuning bandgap properties and adjusting the transmission by orders of magnitude. 


The three-dimensional media were fabricated by brazing aluminum beads together to form a disordered porous solid network with either vacuum in the pores.  This system is of particular interest because it has been shown to exhibit Anderson localization of ultrasound.  With such system, the density of states (DOS) was investigated.  It is the number of vibrational states per unit frequency range per unit volume.  The DOS is a fundamental property of any system and can influence not only wave transport but also the possibility of forming localized states.  The DOS was measured by directly counting the modes in the frequency domain.  At intermediate frequencies, the DOS was found to be approximately independent of frequency, while at higher frequencies, the frequency dependence was consistent with traditional DOS models.  Furthermore, the level statistics, which describe the distribution of the separations between neighbour modes in frequency, of the modes was investigated to determine the conditions under which level repulsion occurs.  As the sample becomes larger to have more modes, the modes start to overlap and repel each other so that level repulsion effects become important.  Consequently, the level statistics were observed to become closer to GOE predictions as the sample size increased.  For the last, as there is a transition from diffusive to localized regime around the lower bandgap edge, a transition from GOE to Poisson distribution is observed.


Contact: Prof. YongKeun Park, Physics Dept., (



번호 일시 장소 연사 제목
공지 2019/09/18 - 12/5  Seminar Room #1323  Prof. David Schuster and etc.  Fall 2019: Physics Seminar Serises
공지 2019/09/02 - 12/09  Seminar Room 1501  이호성 박사 (한국표준과학연구원) and etc.  Fall 2019: Physics Colloquium
175 June 17 (Mon.), 10:30 AM  #1323, E6-2  Dr. See-Hun Yang  Chiral Spintronics file
174 June 14, 2016 (Tue) 3PM  #1323 (E6-2 1st fl.)  Prof. Seungyong Hahn, Florida State University  No-Insulation High Temperature Superconductor Magnet Technology for Compact, Reliable, and Low-Cost High Field DC Magnets
173 June 14 (THU), 10:00 AM  E6-2, 2nd fl. #2502  Prof. Kenji Toyoda  Phonons and polariton-like particles in trapped ions for quantum computation and quantum simulation file
172 Jun. 2 (Fri.), 4:00 PM  #1323 (E6-2. 1st fl.)  Dr. Sang Wook Kim  Maxwell's demon in quantum wonderland file
171 Jun. 2 (Fri.), 02:30 PM  E6-2. 1st fl. #1323  Dr. Euyheon Hwang(황의헌)  Quasiparticle Interference and Fourier transform scanning tunneling spectroscopy in WTe2 (Weyl semimetal) file
170 Jun. 18 (MON), 10:00 AM  E6-2. 2nd fl. #2502  Dr. Thibault VOGT  Rydberg electromagnetically induced transparency and microwave-to-optical conversion using Rydberg atoms file
169 Jun. 16 (Thu) 4PM  #1323(E6-2, 1st fl.)  Hyochul Kim, Samsung Advanced Institute of Technology  Quantum information processing using quantum dots and photonic crystal cavities
168 Jun. 14 (Tue) 4PM  Seminar Room (#2502, 2nd fl.)  Young-Sik Ra, Université Pierre et Marie Curie  Photonic quantum network based on multimode squeezed vacuums and single-photon subtraction
167 Jun. 1(Wed) 10:30 AM  BK21 Conference Room (#1318, E6-2)  Dr. Noriaki Horiuchi, Editor, Nature Photonics  Welcome to Nature Photonics
166 Jun. 01 (Fri.), 11:00 AM  E6-2. 1st fl. #1323  Dr. Seung Sae Hong  Topological phases in low-dimensional quantum materials file
165 Jun 28, 14:00  E6-2, #1322  Dr. Bongjae Kim, Dr. Sooran Kim, Dr. Jeongwoon Hwang  1st Research-exchange meeting of computational material physics file
164 Jun 24 (Mon) 11:00  E6-2, #1323  Dr. Henning Schomerus  Topological photonic anomalies file
163 Jun 1 (Wed) 4 PM  #1323(E6-2 1st fl.)  Kil-Byoung Chai, Caltech  Laboratory experiments relevant to mesospheric clouds, Saturn’s rings & astrophysical jets
162 July. 14 (Fri.), 3:00 PM  #1323 (E6-2. 1st fl.)  Dr. Jun Hyun Lee / University of Maryland  Chiral anomaly in disordered Weyl semimetals file
161 July 9 (Mon.), 14:00 PM  #1323, E6-2  Prof. Cesar A. Hidalgo, MediaLab, MIT  The principles of collective learning file
160 July 8(Mon), 14:00  E6, #1322  T. L. M. Guedes (Univ. of Konstanz)  Ultrabroadband squeezed pulses and their relation to relativity file
159 July 31(Wed.)/ 16:00  E6-2, #1323  Dr. Ivan Borzenets  Features of ballistic superconducting graphene file
158 July 30 (Tue), 4:00 PM  #1323, E6-2  Dr. Mingu Kang  Dirac fermions and flat bands in correlated kagome metals file
157 July 27, 2018 at 15:00  Room 5318, KAIST Natural Sciences Lecture Hall(E6).  Dr. Hyejung Kim(Technische University Dresden)  Muon g-2 in the 2HDM and MSSM: comprehensive numerical analysis and absolute maxima file
156 July 26, 2018 at 14:00  Room 5318, KAIST Natural Sciences Lecture Hall(E6).  Manki Kim (Department of Physics, Cornell University)  Inflation in String Theory and Backreaction file