visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
장소 B501, Room Red, KI bldg. 5nd fl. 
일시 2015/08/04, 11PM 
연사 Dr. Eric Jin Ser Lee(Univ. of Manitoba, Canada) 

Propagation of ultrasound through two- and three-dimensional strongly scattering media

2015/08/04(TUE), 11PM, B501(Room Red, KI bldg. 5nd fl.)
Dr. Eric Jin Ser Lee,  Department of Physics and Astronomy, Univ. of Manitoba, Canada

 

 

During my Ph. D study at the University of Manitoba, I have investigated the propagation of ultrasound through two- and three-dimensional strongly scattering media, with either random or ordered internal structures, through experiments and finite element simulations.  All media investigated have strong scattering resonances, leading to novel transport behaviour. 

 

The two-dimensional samples consist of nylon rods immersed in water.  Nylon fishing lines under tension are used as two-dimensional scatterers.  Note that since the rods are parallel and of uniform diameter, there is negligible scattering of waves out of the plane perpendicular to the rods, so that the system appears two-dimensional from the wave point of view for propagation in this plane.  When nylon rods are surrounded by water, they exhibit strong scattering resonances.  In such an environment, the nylon scattering resonance can couple with the propagating mode through water to create a bandgap.  This is a called hybridization gap.  When the nylon rods are arranged in a triangular lattice to form two-dimensional phononic crystals, very unusual dispersion properties are observed when the lattice constant is adjusted so that Bragg and hybridization gaps overlap in frequency.  This behaviour is attributed to the competition between two co-existing propagating modes, leading to a new method for tuning bandgap properties and adjusting the transmission by orders of magnitude. 

 

The three-dimensional media were fabricated by brazing aluminum beads together to form a disordered porous solid network with either vacuum in the pores.  This system is of particular interest because it has been shown to exhibit Anderson localization of ultrasound.  With such system, the density of states (DOS) was investigated.  It is the number of vibrational states per unit frequency range per unit volume.  The DOS is a fundamental property of any system and can influence not only wave transport but also the possibility of forming localized states.  The DOS was measured by directly counting the modes in the frequency domain.  At intermediate frequencies, the DOS was found to be approximately independent of frequency, while at higher frequencies, the frequency dependence was consistent with traditional DOS models.  Furthermore, the level statistics, which describe the distribution of the separations between neighbour modes in frequency, of the modes was investigated to determine the conditions under which level repulsion occurs.  As the sample becomes larger to have more modes, the modes start to overlap and repel each other so that level repulsion effects become important.  Consequently, the level statistics were observed to become closer to GOE predictions as the sample size increased.  For the last, as there is a transition from diffusive to localized regime around the lower bandgap edge, a transition from GOE to Poisson distribution is observed.

 

Contact: Prof. YongKeun Park, Physics Dept., (yk.park@kaist.ac.kr)

 

 

번호 일시 장소 연사 제목
62 Nov. 20 (Fri.), 04:00 PM  Online  Dr. Dohun Kim  Coherent control of field gradient induced quantum dot spin qubits
61 7월 29일(목) 오후 2시 ~ 오후 4시  Online seminar  Dr. Kunio Kaneta(KIAS)  Gravitationally Induced Dark Sector and Inflationary Dynamics file
60 Jun. 11 (Fri.), 04:00 PM  Online seminar  Dr. Keun Su Kim(Yonsei University)  Pseudogap in surface-doped black phosphorus file
59 Jun. 11 (Fri.), 02:30 PM  Online seminar  Dr. Jin Woong Cha(KRISS)  Engineering sound waves and vibrations in multi-mode nanomechanical systems file
58 May. 14 (Fri.), 04:00 PM  Online seminar  Dr. Je-Hyung Kim(UNIST)  Spatial and temporal separation of environmental dephasing sources from solid-state quantum emitters file
57 May. 14 (Fri.), 02:30 PM  Online seminar  Dr. Suyong Jung(KRISS)  Electrically tunable spin valve effect in vertical van-der-Waals magnetic tunnel junctions file
56 Jan.28(Thu), 06:00PM  Online Seminar  Alexandre Zagoskin(Loughborough Univ.)  Quantum metamaterials: concept, theory, prototypes and possible applications file
55 Mar25(Thur), 04:00PM  Online Seminar (Zoom)  Prof. Atsushi Tokiyasu (Tohoku Univ.)  Search for dark matter axion with Rydberg atoms file
54 Apr. 2 (Fri.), 04:00 PM  Online(Zoom)  Dr. Heejun Yang (KAIST)  Van der Waals heterostructures for orbital gating-based phototransistors and electronic spectroscopy
53 Apr. 2 (Fri.), 02:30 PM  Online(Zoom)  Dr. Tae Hyun Kim (SNU)  Quantum computing and entanglement generation using trapped ions and photons
52 Nov.26(Thu), 04:00PM  Online(Zoom)  Myung-Ki Kim  2020 가을학기 광학분야 특별세미나(Light Engineering Beyond the Diffraction Limit)
51 Nov 17th 12:00 PM  Online(Zoom)  Prof. Qiang Lin (Univ. of Rochester, USA)  Quantum- & Nano-Photonics" 세미나 시리즈 file
50 3 PM, 12 Jun (Wed), 2019  Rm# 1323, E6-2  Dr. Minyoung You  The relation between free and interacting fermionic SPT phases file
49 8/19 (Mon), 10:00~11:30, 8/22 (Thur), 10:00~11:30  Rm. 1322, E6-2  Nicolas Treps  Tutorials on Multimode Quantum Optics in the Continuous Variable Regime file
48 2019. 7. 16(화)  Rm. 1323 (E6-2)  Prof. Sidney Nagel  2019 Physics Distinguished Lecture file
47 August 27 (Tue.), 4:00PM  Rm. 1323, E6  Hiroshi Eisaki  Critical current properties of Fe-based superconductors file
46 August. 14th (Wed.), 4:00PM,  Rm. 1323, E6  Prof. Nicolas Treps  Quantum Optics, at the heart of quantum metrology and quantum information file
45 RM. 1323, E6-2    Spring 2019: Physics Seminar Serises file
44 Feb. 25 - Jun 3  Rm. 1501 (E6)    Spring 2019: Physics Colloquium file
43 January 23, 2019  Rm. C303, Creation Hall (3F), Munji Campus  Mikko Mottonen  Ultrasensitive Microwave Bolometer: Opportunity for Axion Detectors file