visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
장소 B501, Room Red, KI bldg. 5nd fl. 
일시 2015/08/04, 11PM 
연사 Dr. Eric Jin Ser Lee(Univ. of Manitoba, Canada) 

Propagation of ultrasound through two- and three-dimensional strongly scattering media

2015/08/04(TUE), 11PM, B501(Room Red, KI bldg. 5nd fl.)
Dr. Eric Jin Ser Lee,  Department of Physics and Astronomy, Univ. of Manitoba, Canada

 

 

During my Ph. D study at the University of Manitoba, I have investigated the propagation of ultrasound through two- and three-dimensional strongly scattering media, with either random or ordered internal structures, through experiments and finite element simulations.  All media investigated have strong scattering resonances, leading to novel transport behaviour. 

 

The two-dimensional samples consist of nylon rods immersed in water.  Nylon fishing lines under tension are used as two-dimensional scatterers.  Note that since the rods are parallel and of uniform diameter, there is negligible scattering of waves out of the plane perpendicular to the rods, so that the system appears two-dimensional from the wave point of view for propagation in this plane.  When nylon rods are surrounded by water, they exhibit strong scattering resonances.  In such an environment, the nylon scattering resonance can couple with the propagating mode through water to create a bandgap.  This is a called hybridization gap.  When the nylon rods are arranged in a triangular lattice to form two-dimensional phononic crystals, very unusual dispersion properties are observed when the lattice constant is adjusted so that Bragg and hybridization gaps overlap in frequency.  This behaviour is attributed to the competition between two co-existing propagating modes, leading to a new method for tuning bandgap properties and adjusting the transmission by orders of magnitude. 

 

The three-dimensional media were fabricated by brazing aluminum beads together to form a disordered porous solid network with either vacuum in the pores.  This system is of particular interest because it has been shown to exhibit Anderson localization of ultrasound.  With such system, the density of states (DOS) was investigated.  It is the number of vibrational states per unit frequency range per unit volume.  The DOS is a fundamental property of any system and can influence not only wave transport but also the possibility of forming localized states.  The DOS was measured by directly counting the modes in the frequency domain.  At intermediate frequencies, the DOS was found to be approximately independent of frequency, while at higher frequencies, the frequency dependence was consistent with traditional DOS models.  Furthermore, the level statistics, which describe the distribution of the separations between neighbour modes in frequency, of the modes was investigated to determine the conditions under which level repulsion occurs.  As the sample becomes larger to have more modes, the modes start to overlap and repel each other so that level repulsion effects become important.  Consequently, the level statistics were observed to become closer to GOE predictions as the sample size increased.  For the last, as there is a transition from diffusive to localized regime around the lower bandgap edge, a transition from GOE to Poisson distribution is observed.

 

Contact: Prof. YongKeun Park, Physics Dept., (yk.park@kaist.ac.kr)

 

 

번호 일시 장소 연사 제목
공지 Sep.22 2022  E6-1 #1323    2022 가을학기 응집물리 및 광학 세미나 전체 일정
303 May. 25th (Wed), 14:00  E6 Room(#2501)  Dr. Duk-Hyun Choe(Samsung Advanced Institute of Technology)  Atomic-level insights into ferroelectric switching and preferred orientation of ultrathin hafnia file
302 May. 25(Wed), 4pm  E6-2. 1st fl. #1323 / Zoom  Dr. Sungwoo Hong (Enrico Fermi Institute at University of Chicago)  Uncovering New Lampposts for Dark Matter: Continuum or Conformal
301 May. 19(Thu), 4pm  E6-2. #1323 & Zoom  Dr.Jay Hyun Jo (Yale University, Department of Physics)  Chasing Long Standing Neutrino Anomalies with MicroBooNE
300 May. 18(Wed), 4pm  E6-2. #1323 & Zoom  Dr.Heeyeon Kim (Rutgers University, Department of Physics and Astronomy)  Geometry, Algebra, and Quantum Field Theory
299 May. 17(Mon) 17:00  Zoom webinar  Jing Shi (UC Riverside, USA)  Spin current generation and detection in uniaxial antiferromagnets file
298 May. 17 (Thu.), 01:30 PM  E6-2. 1st fl. #1323  Prof. Yong-Baek Kim University of Toronto  Quantum Spin Liquid in Kitaev Materials file
297 May. 14 (Fri.), 04:00 PM  Online seminar  Dr. Je-Hyung Kim(UNIST)  Spatial and temporal separation of environmental dephasing sources from solid-state quantum emitters file
296 May. 14 (Fri.), 02:30 PM  Online seminar  Dr. Suyong Jung(KRISS)  Electrically tunable spin valve effect in vertical van-der-Waals magnetic tunnel junctions file
295 May. 13 (Fri.), 04:00 PM  자연과학동(E6-2) 1st fl. #1323  Dr. Yosep Kim(Center for Quantum Information, KIST)  High-fidelity iToffoli gate for fixed-frequency superconducting qubits file
294 May. 13 (Fri.), 02:30 PM  Zoom webinar  Dr. Kun-Rok Jeon(Department of Physics, Chung-Ang University)  Topological Superconducting Spintronics Towards Zero-Power Computing Technologies file
293 May. 12(Thu), 4pm  E6-2. #1323 & Zoom  Dr.Philip Chang (University of California San Diego, Department of Physics)  New frontiers of electroweak physics at the LHC
292 May. 12 (Fri.), 01:30 PM  E6-2. 1st fl. #1323  Dr. Young Kuk Kim  Topological Dirac insulator
291 May. 11(Wed), 4pm  E6-2. #1323 & Zoom  Dr. Sunok Josephine Suh (Kavli Institute for Theoretical Physics)  Gravity as a phenomenon in quantum dynamics
290 May. 11 (Fri.), 04:00 PM  E6-2. 1st fl. #1323  Dr. Nam Kim  암페어 단위 재정의와 단전자 펌프 소자 개발 file
289 May. 11 (Fri.), 02:30 PM  E6-2. 1st fl. #1323  Dr. Kun Woo Kim  Disordered Floquet topological insulators file
288 May 9 (Wed.), 04:00 PM  #1323, E6-2  Prof. Jong-Soo Rhyee  Recent advances in thermoelectric bulk composites file
287 May 9 (Thu.), 16:00 PM  #1323, E6-2  Prof. Kwang Geol Lee  Quantum Optical Sensing Using Single Photons And Single Photon Emission from Single Emitters file
286 May 9 (Thu.), 16:00 PM  #1323, E6-2  Prof. Kwang Geol Lee  Quantum Optical Sensing Using Single Photons And Single Photon Emission from Single Emitters file
285 May. 8th (Wed), 16:00  E6 Room(#1323)  Jieun Lee  Imaging valley dependent electron transport in 2D semiconductors file
284 May 311 (Thu.), 04:00 PM  #1323, E6-2  Prof. Teun-Teun Kim  Dynamic control of optical properties with gated-graphene metamaterials file