visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2024-10-21 13:00 
연사  
장소 E6-2 #3441 

 

Non-Hermitian topological phases have recently garnered increasing attention since they possess richer topological properties than those in Hermitian systems. In the theory of topological phases, the bulk-edge correspondence (BEC) takes one of the most important roles. For the topological phases characterized by the point gap, which is an energy gap unique to non-Hermitian systems, the BEC has been established for the systems with periodic boundary systems (PBC), semi-infinite boundary conditions (SIBC), and open boundary conditions (OBC) as detailed in [1]. Further, in Hermitian systems, the BEC is extended to the junction systems consisting of two subsystems with independent topological invariant. In the non-Hermitian system, however, the BEC has not been discussed for the junction systems so far. In this work, we clarify the BEC for point gap topological phases in junction systems [2]. As shown in Fig. 1, we consider a one-dimensional junction system with PBC where two ends of a subsystem are connected to those of the other subsystem so that the whole system forms a ring geometry. Each subsystem has asymmetric hopping terms and its own point-gap topological invariant. We confirm that the spectrum for the junction system with PBC appears on the complex-energy plane where the difference in winding number for each subsystem is non-trivial. We further study eigenstates in the junction systems and find that unique ''non-Hermitian proximity effects'' occur near the interface. These results establish the BEC for the point-gap topological phases in junction systems with PBC, which is regarded as a natural extension inferred from the BEC in Hermitian systems. We also examine the junction system with OBC then confirm that the spectrum for the junction system with OBC appears on and inside the spectrum for the corresponding junction system with PBC. We further extend the BEC for point-gap topological phases to multi-segmented junction systems, which may provide deeper insights into spectrum and localization phenomena across various models.

 
[1] N. Okuma, K. Kawabata, K. Shiozaki, and M. Sato, Phys. Rev. Lett. 124, 086801 (2020).
[2] G. Hwang and H. Obuse, Phys. Rev. B 108, L121302 (2023).
 
Contact: Sungbin Lee(sungbin@kaist.ac.kr)

 

번호 날짜 연사 제목
공지 2025-02-24 16:00    2025년 봄학기 콜로키움 안내
공지 2025-02-27 16:00    2025년 봄 물리학과 특별세미나 (광학/응집물리 분야)
334 2021-07-29 14:00    Gravitationally Induced Dark Sector and Inflationary Dynamics file
333 2021-06-22 17:00    Spintronics meets Quantum Materials file
332 2021-06-11 16:00    Pseudogap in surface-doped black phosphorus file
331 2021-06-11 14:30    Engineering sound waves and vibrations in multi-mode nanomechanical systems file
330 2021-06-08 10:00    Photonic crystal devices for sensing file
329 2021-05-27 16:00    찾아가는 물리연구 현장(유럽 입자물리학연구소 소개) file
328 2021-05-17 17:00    Spin current generation and detection in uniaxial antiferromagnets file
327 2021-05-14 16:00    Spatial and temporal separation of environmental dephasing sources from solid-state quantum emitters file
326 2021-05-14 14:30    Electrically tunable spin valve effect in vertical van-der-Waals magnetic tunnel junctions file
325 2021-04-19 19:00    Evidence of Electrical Switching in Antiferromagnets and Coherent Spin Pumping file
324 2021-04-09 10:00    Integrated Lithium Niobate Photonics file
323 2021-04-02 16:00    Van der Waals heterostructures for orbital gating-based phototransistors and electronic spectroscopy
322 2021-04-02 14:30    Quantum computing and entanglement generation using trapped ions and photons
321 2021-03-25 16:00    Search for dark matter axion with Rydberg atoms file
320 2021-03-02 16:00    Sensitive terahertz detection with graphene-based transistors file
319 2021-02-17 09:00    석학 대중 강연 및 강의 시리즈 file
318 2021-02-15 17:00    Magnetic Cluster Octupole Domain evolutation in chiral antiferromagnets file
317 2021-02-02 14:30    Quantum- & Nano-Photonics 세미나(Integrated Nanophotonics with Metamaterials, Microcomb, and Atomic Systems) file
316 2021-01-28 18:00    Quantum metamaterials: concept, theory, prototypes and possible applications file
315 2021-01-28 15:00    Topological Transport of Deconfined Hedgehogs in Magnets file