visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2023-11-15 16:00 
일시 16:00PM, 15th Nov (Wed) 
장소 E6-6, #119 
연사 Prof. Cristian Ciraci(Istituto Italiano di Tecnologia (IIT)) 
물리학과에서는 아래와 같이 세미나를 개최하고자 하오니, 
관심있는 분들의 많은 참석 부탁드립니다.
 
Date: 16:00~18:00 PM, 15th Nov (Wed)
 
Place: E6-6, #119호
 
Speaker: Prof. Cristian Ciraci(Istituto Italiano di Tecnologia (IIT))
 
Title: Quantum hydrodynamic theory for plasmonics: from molecule-coupling to nonlinear optics
 
Abstract: 

Metals support surface plasmons at optical wavelengths and have the ability to localize light to sub-wavelength regions. Nano-gap plasmonic systems – in which two or more metallic nanoparticles are separated only few nanometers from each other by an insulating spacer – have been predicted to produce enormous field enhancements (as much as thousands of times that of the incident radiation). For the narrowest (< 1 nm) gaps, light can be so tightly confined that the nonlocality associated with the dielectric response of the metal and quantum effects can have a strong impact on the scattering properties of the system, placing strict bounds on the ultimate field enhancement [1]. A reliable way to theoretically describe and numerically model optical properties of plasmonic nanostructures with different length scales requires methods beyond classical electromagnetism. In this context, it becomes very important to develop simulation techniques to take into account quantum microscopic features at the scale of billions of atoms. A promising solution is given by the hydrodynamic theory, which takes into account the nonlocal behavior of the electron response by including the electron pressure and it can be generalized so that it can describe electron spill-out and tunneling effects [2, 3, 4]. This method allows to explore light-matter interactions in extreme scenarios in which microscopic features can strongly affect the macroscopic optical response. In this seminar, I will present the quantum hydrodynamic theory for plasmonics and will discuss some applications including, photon emission [5], strong-coupling [6] and nonlinear optics [7, 8]. 

 

 References

 [1] C. Cirac`ı, R. T. Hill, J. J. Mock, Y. A. Urzhumov, A. I. Fernandez-Dominguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science, vol. 337, no. 6098, pp. 1072 – 1074, 2012. 

 [2] C. Cirac`ı and F. D. Sala, “Quantum hydrodynamic theory for plasmonics: Impact of the electron density tail,” Physical Review B, vol. 93, no. 20, p. 205405, 2016. 

 [3] C. Cirac`ı, “Current-dependent potential for nonlocal absorption in quantum hydrodynamic theory,” Physical Review B, vol. 95, no. 24, p. 245434, 2017. 

 [4] H. M. Baghramyan, F. D. Sala, and C. Cristian, “Laplacian-Level Quantum Hydrodynamic Theory for Plasmonics,” Physical Review X, vol. 11, no. 1, p. 011049, 2021. 

 [5] H. M. Baghramyan and C. Cirac`ı, “Fluorescence quenching in plasmonic dimers due to electron tunneling,” Nanophotonics, vol. 11, no. 11, pp. 2473–2482, 2022.

 [6] C. Cirac`ı, R. Jurga, M. Khalid, and F. D. Sala, “Plasmonic quantum effects on single-emitter strong coupling,” Nanophotonics, vol. 8, no. 10, pp. 1821–1833, 2019. 

 [7] M. Khalid and C. Cirac`ı, “Enhancing second-harmonic generation with electron spill-out at metallic surfaces,” Communications Physics, vol. 3, no. 1, p. 214, 2020. 

 [8] F. De Luca and C. Cirac`ı, “Impact of Surface Charge Depletion on the Free Electron Nonlinear Response of Heavily Doped Semiconductors,” Physical Review Letters, vol. 129, no. 12, p. 123902, 2022.

 
번호 날짜 장소 제목
438 2023-02-20 16:00  Room 1323, KAIST Natural Sciences Lecture Hall(E6)  Physics of ferromagnet/superconductor junctions
437 2023-01-12 16:00  E6-2 #1323  Spin wavepackets in the Kagome ferromagnet Fe3Sn2: propagation and precursors
436 2023-01-12 14:40  E6-2 #1323  JILA 1D Wannier-Stark optical lattice clock file
435 2023-01-11 16:00  E6-2 #1323  Non-abelian anyons and graph gauge theory on a superconducting processor, Eun-Ah Kim (Cornell University/Ewha Womans University)
434 2023-01-11 11:00  E6-2 #1323  Directly proving magnetoelastic coupling in a soft ferromagnet using Lorentz 4D-STEM file
433 2023-01-10 16:00  E6-2 #1323  Terahertz Spectroscopy of Quantum Materials, Jae Hoon Kim (Yonsei University)
432 2023-01-09 16:00  E6-2 #1323  Non-Hermitian Hopf-bundle Matter. Moon Jip Park (IBS-PCS)
431 2022-12-20 16:00  E6-2.1st fl. #1323 & zoom  Studying Baryonic Flow Across the Cosmic Scales Using Radio and Millimeter Wavelength Experiments
430 2022-12-20 16:00  E6-2. #2501  Getting into Biology and Medicine as Physicist
429 2022-12-13 11:00  E6-2 #1322  Art of thin film engineering toward topological quantum computation file
428 2022-12-09 11:00  E6-2 #1323  [Update 세미나영상](응집물리 세미나) Single-shot measurements of strongly-correlated artificial molecular levels in semiconductor quantum dots file
427 2022-12-07 16:00  E6-2 #1323  (광학분야 세미나) Non-Hermitian physics and non-Hermitian singularity
426 2022-11-25 11:00  E6-2 #1323  [Update 세미나영상](응집물리 세미나) DMFT+ NRG: From models to real materials, from local to nonlocal correlations file
425 2022-11-24 16:00  E6-2 #1323 & Zoom  Probing fundamental physics by mapping the mm and sub-mm sky
424 2022-11-18 16:00  E6-2. 1st fl. #1323 & Zoom  Qubits, new experimental tools for physics file
423 2022-11-18 14:30  E6-2. 1st fl. #1323 & Zoom  Kondo cloud condensation in a highly-doped semiconductor metal file
422 2022-11-17 16:00  E6-2 #1323  (광학분야 세미나) Ultrastructural and Spectroscopic Studies by Super-Resolution Fluorescence Microscopy
421 2022-11-11 11:00  E6-2 #1323  [Update 세미나영상] (응집물리 세미나) Honeycomb oxide heterostructures for quantum spin liquid file
420 2022-11-10 16:00  E6-2. 1st fl. #1323  Probing the Origin of Cosmic Infrared Background and Future Prospects with SPHEREx
419 2022-11-09 16:00  E6-2. 1st fl. #1323  Radio Astronomy, Radio Interferometry, and Multi-wavelength Studies on Relativistic Jets