visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나

Geometry, Algebra, and Quantum Field Theory

2022.05.17 18:02

admin 조회 수:670

날짜 2022-05-18 16:00 
일시 May. 18(Wed), 4pm 
장소 E6-2. #1323 & Zoom 
연사 Dr.Heeyeon Kim (Rutgers University, Department of Physics and Astronomy) 
김희연 박사의 세미나를 아래와 같이 안내드립니다.
 

Title: Geometry, Algebra, and Quantum Field Theory 

Speaker: Dr.Heeyeon Kim  (Rutgers University, Department of Physics and Astronomy )
Date: May. 18(Wed), 4pm

Place : E6-2. 1st fl. #1323

[Zoom 회의 참가]
 
회의 ID: 870 9940 6103

 

Abstract: 

Quantum Field Theory (QFT) is a powerful description of a wide range of physical phenomena, from the interaction of elementary particles to exotic phases of matter. However, despite its remarkable success, the traditional framework of QFT based on perturbation theory remains incomplete. One of the most important challenges is to build a mathematical foundation of QFT that enables a systematic study of strongly interacting systems.
 
In this talk, I will introduce String Theory as a unique tool that connects various ideas in quantum physics and modern mathematics. Regardless of its phenomenological role, this framework provides novel insights into both disciplines. Dualities in string theory predict extremely non-trivial conjectures identifying two a priori distinct structures in mathematics. Conversely, ideas in modern mathematics have led to new advances in QFT that allows a deeper understanding of its non-perturbative structures.
 
I will discuss recent development in building a unifying tool that plays a central role in establishing this connection. In particular, I will focus on the interplay between supersymmetric QFTs and problems in enumerative geometry, which is a branch in modern mathematics that counts the number of solutions to fundamental geometric questions. The interaction leads to a variety of new applications across physics and mathematics, from black-hole micro-state counting problems to the classification of topological spaces.
번호 날짜 장소 제목
364 2022-12-20 16:00  E6-2. #2501  Getting into Biology and Medicine as Physicist
363 2016-05-11 16:00  E6-2. #1323(1st fl.)  The quest for novel high-temperature superconductors---Prospects and progress in iridates
362 2016-10-07 16:00  E6-2. #1323(1st fl.)  “Tilt engineering of 4d and 5d transition metal oxides?”
361 2016-11-10 16:00  E6-2. #1323(1st fl.)  Low Dimensional Active Plasmonics and Electron Optics in Graphene
360 2016-11-04 13:30  E6-2. #1323(1st fl.)  Exotic phenomena at oxide LaAlO3/SrTiO3 hetero-interface and their applications
359 2016-05-24 16:00  E6-2. #1323(1st fl.)  Electronic and magnetic properties of 2D transition-metal thiophosphates and tunability of magnetic order with carrier density
358 2016-11-04 15:00  E6-2. #1323(1st fl.)  Quantum information experiments using few electron spins in semiconductors
357 2016-10-07 13:30  E6-2. #1323(1st fl.)  “Symmetry and topology in transition metal dichalcogenide?”
356 2022-05-12 16:00  E6-2. #1323 & Zoom  New frontiers of electroweak physics at the LHC
» 2022-05-18 16:00  E6-2. #1323 & Zoom  Geometry, Algebra, and Quantum Field Theory
354 2022-05-19 16:00  E6-2. #1323 & Zoom  Chasing Long Standing Neutrino Anomalies with MicroBooNE
353 2022-05-11 16:00  E6-2. #1323 & Zoom  Gravity as a phenomenon in quantum dynamics
352 2023-06-22 16:00  E6-2,1323  [High Energy Physics Seminar] The Branes Behind Generalized Symmetry Operators
351 2015-07-15 14:00  E6-2,1323  Electronic and optical properties of titanate-based oxide superlattices
350 2019-12-27 15:00  E6-2,#5318  The superconducting order parameter puzzle of Sr2RuO4 file
349 2023-11-08 10:00  E6-2,#2502 & zoom  [High Energy Theory seminar] The Vacuum Sector of Asymptotically Isometric Codes
348 2019-07-21 12:00  E6-2,# 5318  Challenges and Opportunities in Theoretical Particle Physics 2019 file
347 2023-10-11 16:00  E6-2, Rm2502  [High Energy Theory Seminar] Axion Magnetic Resonance
346 2023-12-08 10:30  E6-2, Rm#2502  Novel transport phenomena in insulators
345 2024-04-11 16:00  E6-2, Rm#1323  Theoretical Studies of the Electric Field Induced Thermal Hall Effect in the Quantum Dimer Magnets XCuCl3 (X = Tl, K)