visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2022-05-13 16:00 
일시 May. 13 (Fri.), 04:00 PM 
장소 자연과학동(E6-2) 1st fl. #1323 
연사 Dr. Yosep Kim(Center for Quantum Information, KIST) 

SRC Seminar

 

 

High-fidelity iToffoli gate for fixed-frequency superconducting qubits

 

Dr. Yosep Kim

Center for Quantum Information, KIST

 

May. 13 (Fri.), 04:00 PM

E6-2. 1st fl. #1323

 

 

 

 

 

Abstract:

The development of noisy intermediate-scale quantum (NISQ) devices has extended the scope of executable quantum circuits with high-fidelity single- and two-qubit gates. Equipping NISQ devices with three-qubit gates will enable the realization of more complex quantum algorithms and efficient quantum error correction protocols with reduced circuit depth. Several three-qubit gates have been implemented for superconducting qubits, but their use in gate synthesis has been limited due to their low fidelity. In this talk, I explain how to implement a high-fidelity iToffoli gate for fixed-frequency superconducting qubits. As with the Toffoli gate, this three-qubit gate can be used to perform universal quantum computation. The iToffoli gate can be implemented by simultaneously applying microwave pulses to a linear chain of three qubits, revealing a process fidelity as high as 98.26(2)%. Moreover, I numerically show that this gate scheme can produce additional three-qubit gates which provide more efficient gate synthesis than the Toffoli and Toffoli gates. This work not only brings a high-fidelity iToffoli gate to current superconducting quantum processors but also opens a pathway for developing multi-qubit gates based on two-qubit interactions.

 

 

 

 Contact: SunYoung Choi, (sun.0@kaist.ac.kr)

Center for Quantum Coherence in Condensed Matter, KAIST

번호 날짜 장소 제목
271 2023-01-12 14:40  E6-2 #1323  JILA 1D Wannier-Stark optical lattice clock file
270 2022-11-11 11:00  E6-2 #1323  [Update 세미나영상] (응집물리 세미나) Honeycomb oxide heterostructures for quantum spin liquid file
269 2022-10-27 16:00  E6-2 #1323  (광학분야 세미나) Cavity optomechanical systems for quantum transduction
268 2023-05-18 16:00  E6-2 #1323  (광학분야 세미나)Dielectric metasurfaces for optimized optical system and spatial light modulators
267 2023-05-19 11:00  E6-2 #1323  (응집물리 세미나)Dipole condensations in Tilted Bose-Hubbard Chains
266 2022-10-07 11:00  E6-2 #1323  [Update 세미나 영상] (응집물리 세미나) Competing orders in a vanadium-based kagome metal monolayer file
265 2022-09-23 11:00  E6-2 #1323  [Update 세미나 영상] (응집물리 세미나) Steady Floquet-Andreev states in graphene Josephson junctions file
264 2023-05-26 11:00  E6-2 #1323  (응집물리 세미나)Spectral Analyses of Stochastic Charge Trapping in Oxide Heterostructures file
263 2022-12-07 16:00  E6-2 #1323  (광학분야 세미나) Non-Hermitian physics and non-Hermitian singularity
262 2022-10-13 16:00  E6-2 #1323  (광학분야 세미나) Ultrafast Optics for Ultra-Precision Metrology and Realization of Flexible/Stretchable Laser-Induced-Graphene Electronics
261 2022-11-03 16:00  E6-2 #1323  (광학분야 세미나) Single-photon emission from low-dimensional materials
260 2022-06-03 11:00  E6-2 #1323  (응집물리 세미나) Theoretical Investigation of Exotic Quantum States in Low-dimensional Materials
259 2022-10-28 11:00  E6-2 #1323  [Update 세미나영상] (응집물리 세미나) Machine-Learning-Guided Prediction models and Materials discovery for high Tc cuprates file
258 2023-06-01 16:00  E6-2 #1323  (광학분야 세미나)Quantum sensing using a squeezed light from hot Rb vapor
257 2022-12-09 11:00  E6-2 #1323  [Update 세미나영상](응집물리 세미나) Single-shot measurements of strongly-correlated artificial molecular levels in semiconductor quantum dots file
256 2023-03-16 16:00  E6-2 #1323  2023 봄학기 광학분야 및 응집물리 특별세미나 전체 일정 file
255 2022-11-25 11:00  E6-2 #1323  [Update 세미나영상](응집물리 세미나) DMFT+ NRG: From models to real materials, from local to nonlocal correlations file
254 2017-10-10 16:00  E6-2 #1323  Discovery of New 2D Materials with Diverse Physical Properties
253 2020-10-23 14:00  E6-2 #1323  Plasmon spectroscopy of low-dimensional superconductors in fluctuating regime file
252 2022-11-24 16:00  E6-2 #1323 & Zoom  Probing fundamental physics by mapping the mm and sub-mm sky