visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2022-04-01 16:00 
일시 Apr. 1(Fri.), 04:00 PM 
장소 Zoom webinar 
연사 Dr. Kayoung Lee (KAIST) 

 

SRC Seminar

 

 

High-field Electron Transport and Interaction Induced Phenomena in 2D Materials

 

Dr. Kayoung Lee

Electrical Engineering, KAIST

 

Apr. 1 (Fri.), 04:00 PM

https://kaist.zoom.us/j/89879980781
회의 ID: 898 7998 0781

암호: 808795

 

 

 

Abstract:

In this talk, I will present our research that spans from fundamental electron transport mechanisms to interaction induced phenomena in low-dimensional electron systems, each of which is in dire need of

innovation to incubate new material-based devices with high performance. Using double bilayer graphene heterostructures, separated by a hexagonal boron nitride dielectric, we studied interactions

between the two bilayers, where the interlayer spacing is smaller than the intra-layer particle spacing. I will present frictional drag probed on the double bilayer systems, a phenomenon in which charge current

flowing in one (drive) layer induces a voltage drop in the opposite (drag) layer. At temperatures (T) lower than 10 K, we observe a large anomalous negative drag near the drag layer charge neutrality, which increases dramatically with reducing T, strikingly becoming comparable to the layer resistivity at the lowest T = 1.5 K. A comparison of the drag resistivity and the drag layer Peltier coefficient suggests a thermoelectric origin of the drag. The talk will then move on to our recent investigation into electron transport and drift velocity saturation at high electric field in emerging 2D InSe semiconductor with a mobility >2700 cm2/Vs at room temperature. I will report the first measured saturation velocity of 2D InSe exceeding 2 x 107 cm/s. Employing our modified optical phonon emission model to explain the drift velocity saturation at high electric field, we estimate the energy of InSe optical phonons.

 

 

Contact: SunYoung Choi, (sun.0@kaist.ac.kr)

Center for Quantum Coherence in Condensed Matter, KAIST

 

번호 날짜 장소 제목
295 2020-09-24 09:00  Zoom Video  (CAPP/IBS)Searching for Dark Matter with a Superconducting Qubit , Cryogenic Microwave Circuit Development at the NSTU file
294 2020-09-22 09:30  Zoom webinar  Physics and applications of soliton microcombs(Quantum- & Nano-Photonics) file
293 2020-09-14 17:30  Zoom webinar  KAIST Global Forum for Spin and Beyond (Third Forum) file
292 2020-09-11 14:00  zoom  SRC Seminar file
291 2020-08-25 20:00  Zoom webinar  KAIST Global Forum for Spin and Beyond (Second Forum) file
290 2020-08-17 20:00  Zoom webinar  Using magnetic tunnel junctions to compute like the brain file
289 2020-07-02 16:00  Zoom Video Conference Seminar  An irreversible qubit-photon coupling for the detection of itinerant microwave photons file
288 2020-02-20 16:00  #1323, E6-2  Unconventional superconductivity in the locally non-centrosymmetric heavy-fermion CeRh2As2 file
287 2020-02-13 16:30  E6-6, #119  Enhanced Light-Matter Interactions in Graphene with Noble Metal Plasmonic Structures file
286 2020-02-12 13:00  E6-2, #5318  From inflation to new weak-scale file
285 2020-01-17 16:00  #1323, E6-2  Symmetry Breaking and Topology in Superfluid 3He file
284 2019-12-27 15:00  #5318, E6-2  The superconducting order parameter puzzle of Sr2RuO4 file
283 2019-12-27 15:00  E6-2,#5318  The superconducting order parameter puzzle of Sr2RuO4 file
282 2019-12-18 16:00  #1323, E6-2  Road to Higher Tc Superconductivity file
281 2019-12-13 13:30  #1323, E6-2  Biophysics Mini-symposium at KAIST file
280 2019-12-13 13:00  #2501, E6-2  Computational Material Designs: Current Status and Future Directions file
279 2019-12-05 16:00  #1323, E6-2  Subwavelenth Photonic Devices: From Single Photon Sources to Solar Cell file
278 2019-12-03 16:00  #1323, E6-2  Toward Quantum Materials with Correlated Oxides file
277 2019-11-28 16:00  #1323, E6-2  Generation of coherent EUV emissions using ultrashort laser pulses file
276 2019-11-20 16:00  #5302, E6-2  Correlation between superconducting transition temperature and critical current density in irradiated iron-based superconductors file