visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나

Non-reciprocal phase transitions

2022.03.28 11:35

admin 조회 수:542

날짜 2022-03-29 10:00 
일시 10AM, 29th Mar. / 13:30 PM, 30th Mar. 
장소 E6 #1501/zoom, E6 #2502/zoom 
연사 Dr. RYO HANAI (APCTP) 
Title: Non-reciprocal phase transitions
presenter Dr. RYO HANAI (APCTP) 
Date: 10AM, 29th Mar. E6 #1501/zoom
        13:30 PM, 30th Mar. E6 #2502/zoom  
 

https://us02web.zoom.us/j/87623324709?pwd=TElFeTZZT2xCZnZ1azV5OEg4N1BjUT09

회의 ID: 876 2332 4709

암호: 125958

 
abstract

Phase transitions are ubiquitous in nature. For equilibrium cases, the celebrated Landau theory has provided great success in describing these phenomena on general grounds. Even for nonequilibrium transitions such as optical bistability, flocking transition, and directed percolation, one can often define Landau’s free energy in a phenomenological way to successfully describe the transition at a meanfield level. In such cases, the nonequilibrium effect is present only through the noise-activated spatial-temporal fluctuations that break the fluctuation-dissipation theorem. Here, by generalizing the Ginzburg-Landau theory to be applicable to driven systems, we introduce a novel class of nonequilibrium phase transitions [1-2] and critical phenomena [3] that does not fall into this class. Remarkably, the discovered phase transition is controlled by spectral singularity called the exceptional points that can only occur by breaking the detailed balance and therefore has no equilibrium counterparts. The emergent collective phenomena range from active time (quasi)crystals to exceptional point enforced pattern formation, hysteresis, to anomalous critical phenomena that exhibit anomalously large phase fluctuations (that diverge at d≤4) and enhanced many-body effects (that become relevant at d<8) [3]. The inherent ingredient to these is the non-reciprocal coupling between the collective modes that arise due to the drive and dissipation.

[1]  M. Fruchart*, R. Hanai*, P. B. Littlewood, and V. Vitelli, Non-reciprocal phase transitions. Nature 592, 363 (2021).

[2]  R. Hanai, A. Edelman, Y. Ohashi, and P. B. Littlewood, Non-Hermitian phase transition from a polariton Bose-Einstein condensate to a photon laser. Phys. Rev. Lett. 122, 185301 (2019).

[3]  R. Hanai and P. B. Littlewood, Critical fluctuations at a many-body exceptional point. Phys. Rev. Res. 2, 033018 (2020).
 
번호 날짜 장소 제목
304 2015-11-24 16:00  E6-2, #1323  Topology-based understanding of spin dynamics in inhomogeneously magnetized systems
303 2015-12-11 13:30  E6-2, #1323  Quantum spin liquid in the 1/3 depleted triangular lattice Ba3(Ru1-xIrx)Ti2O9
302 2016-01-11 16:00  E6-2, #1323  Mott Physics in the Strong Spin-Orbit Coupling Regime
301 2016-09-29 16:00  E6-2, #1323  2016 Fall, Physics Seminar Serises file
300 2015-12-03 16:00  E6-2, #1323  Hybrid solid state spin qubits in wide bandgap semiconductors
299 2015-11-10 16:00  E6-2, #1323  Rapid heating of matter using high power lasers
298 2015-11-23 13:30  E6-2, #1323  What's Beyond the Standard Model? Lessons from Run I and what might come in Run II
297 2019-07-31 16:00  E6-2, #1323  Features of ballistic superconducting graphene file
296 2019-06-24 11:00  E6-2, #1323  Topological photonic anomalies file
295 2015-12-09 14:00  E6-2, #1323  SWELLABLE COLLOIDAL PARTICLES ARE SWELL
294 2015-12-02 16:00  E6-2, #1323  Samarium Hexaboride: Is it a Topological insulator?
293 2015-12-11 15:45  E6-2, #1323  Dynamical mean field theory studies on heavy fermion system
292 2015-12-01 16:00  E6-2, #1323  Introducing extra dimensions to spectroscopic studies of advanced quantum materials
291 2016-01-26 14:00  E6-2, #1323  Electrochemistry on Nano- and Atomic Levels: Scanning Probe Microscopy Meets Deep Data
290 2019-07-25 16:00  E6-2, #1323  Band topology of twisted bilayer graphene file
289 2023-09-18 11:00  E6-2, #1322  Magic polarisation trapping of polar molecules for tunable dipolar interactions file
288 2023-03-02 11:00  E6-2, #1322  Probing Anomalies of Non-Invertible Symmetries with Symmetry TFTs
287 2023-08-23 16:00  E6-2, #1322  [High Energy Theory Seminar] A spacetime tensor network for AdS3/CFT2
286 2023-11-30 10:30  E6-2, #1322  [High-Energy Theory Seminar] 3d-3d correspondence and 2d N = (0,2) boundary conditions
285 2019-06-28 14:00  E6-2, #1322  1st Research-exchange meeting of computational material physics file