visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2022-01-25 15:00 
연사  
장소 E6 #1501/online 

 

Physics Seminar

 

 

 

 

Emulating twisted double bilayer graphene with a multiorbital optical lattice

 

 

Junhyun Lee

Department of Physics and Astronomy,

Rutgers, the State University of New Jersey

 

Jan. 25th (Tue), 15:00, E6 #1501/online

https://us02web.zoom.us/j/84917344494?pwd=ZlBaNWNhVlYwYUY5RnRoQ2Q2MWp0dz09

회의 ID:  849 1734 4494

암호: 890800

 

We theoretically explores how to emulate twisted double bilayer graphene with ultracold atoms in multiorbital optical lattices. In particular, the quadratic band touching of Bernal stacked bilayer graphene is emulated using a square optical lattice with px, py, and dx2y2 orbitals on each site, while the effects of a twist are captured through the application of an incommensurate potential. The quadratic band touching is stable until the system undergoes an Anderson like delocalization transition in momentum space, which occurs concomitantly with a strongly renormalized single particle spectrum inducing flat bands, which is a generalization of the magic-angle condition realized in Dirac semimetals. The band structure is described perturbatively in the quasiperiodic potential strength, which captures miniband formation and the existence of magic-angles that qualitatively agrees with the exact numerical results in the appropriate regime. We identify several magic-angle conditions that can either have part or all of the quadratic band touching point become flat. In each case, these are accompanied by a diverging density of states and the delocalization of plane wave eigenstates. It is discussed how these transitions and phases can be observed in ultracold atom experiments.

 

Contact: Eunjung Jo, (jojo@kaist.ac.kr)

 

Department of Physics, KAIST

 

번호 날짜 연사 제목
공지 2025-02-24 16:00    2025년 봄학기 콜로키움 안내
공지 2025-02-27 16:00    2025년 봄 물리학과 특별세미나 (광학/응집물리 분야)
366 2025-04-29 16:00  Dr. Tokuro Shimokawa (Okinawa Institute of Science and Technology)  Can experimentally-accessible measures of entanglement distinguish quantum spin liquid and random singlet phases? file
365 2018-10-16 10:00    Capturing protein cluster dynamics and gene expression output in live cells file
364 2023-02-28 11:00    Topotactic redox engineering toward novel material file
363 2022-11-10 16:00    Probing the Origin of Cosmic Infrared Background and Future Prospects with SPHEREx
362 2015-11-10 16:00    Rapid heating of matter using high power lasers
361 2015-12-01 16:00    Introducing extra dimensions to spectroscopic studies of advanced quantum materials
360 2025-04-29 10:00  Dr. Yeonju Go (Brookhaven National Laboratory)  Exploring the Hottest Matter in the Universe: Quark-Gluon Plasma through Hard Probes and Artificial Intelligence file
359 2023-04-13 11:00    [High Energy Theory Seminar]Noninvertible Gauss Law and Axions
358 2023-12-14 16:00    Superconducting qubits for large-scale quantum computers file
357 2016-09-02 14:30    Nanoscale Thermal Physics: Seebeck Effect and Nanoscale Friction
356 2016-09-02 16:00    Quantum Electrical Transport in Topological Insulator Nanowires
355 2018-10-15 16:00    Universal properties of macroscopic current-carrying systems file
354 2018-04-11 13:30    Probing 3D Structure and Physical Properties of Materials at the Single-Atom Level file
353 2022-06-10 11:00    Record-quality two-dimensional electron systems file
352 2022-05-13 16:00    High-fidelity iToffoli gate for fixed-frequency superconducting qubits file
351 2017-05-12 13:30    Topological Dirac insulator
350 2025-07-03 14:00  Dr. Young-Gwan Choi (Max Planck Institute )  Quantum sensing with NV centers: nanoscale magnetometry file
349 2018-04-11 16:00    Non-Gaussian states of multimode light generated via hybrid quantum information processing file
348 2016-05-13 13:30    Aperiodic crystals in low dimensions
347 2022-08-09 14:00    Quantum biology in fluorescent protein: a new model system to study quantum effects in biology file