visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2018-04-13 10:00 
일시 April 13 (Fri.), 10am 
장소 #1323 (E6-2, 1st fl.) 
연사 Dr. Sungkun Hong 

Physics Seminar

 

Quantum meets Mechanics: from Quantum Information to Fundamental Research

 

Dr. Sungkun Hong

Vienna Center for Quantum Science and Technology, University of Vienna

 

April 13 (Fri.), 10am

#1323 (E6-2, 1st fl.)

 

 

Abstract:

Studying quantum aspects of macroscopic moving bodies is a new emerging field in quantum physics. The main experimental approach is cavity optomechanics, where photons in the cavity are used to measure and manipulate motional states of mechanical oscillators. Cavity optomechanics, together with advancements in microfabrication of mechanical devices, has allowed us to observe and control mechanical resonators at the quantum level. This opens new exciting possibilities for quantum information science and for studying quantum physics in hitherto untested macroscopic scales.

In this talk, I will describe two different quantum optomechanics experiments that I have been doing in Vienna. First, I will present our progress in utilizing on-chip optomechanical devices as a new resource for quantum information. Using micro-fabricated silicon structures, we demonstrated the generation of quantum-correlated photon-phonon pairs, the generation and retrieval of single phonons, and the remote entanglement between two mechanical modes, paving the way for telecom-compatible optical quantum networks. Future directions of the work will also be discussed. Next, I will introduce a novel, hybrid optomechanical system consisting of optically levitated nanoparticles and micro-fabricated photonic crystal cavity. The system combines ultra-high mechanical quality of the levitated nanoparticle and strong optical transduction from the optical cavity. It thus will allow for quantum coherent experiments on particle’s motions even at room temperature. I will discuss the current status of the experiment as well as future plans of the work, particularly the matter-wave interferometry in an unexplored mass regime.

 

Contact: Yongseop Kang, Administration Team (T.2599)

 

Department of Physics

번호 날짜 장소 제목
171 2018-07-12 17:00  Room 5318, KAIST Natural Sciences Lecture Hall(E6)  The MilliQan Experiment: Search for Milli-Charged Particles at the LHC
170 2018-07-09 14:00  #1323, E6-2  The principles of collective learning file
169 2018-07-02 15:00  Seminar Room (C303), Creation Hall (3F), KAIST Munji Campus  High Precision Magnetic Field Measurement for the Muon g-2 Experiment file
168 2018-06-22 16:00  #1323, E6-2  Tuning functional properties of BiFeO3 films using strain and growth chemistry file
167 2018-06-22 10:00  E6-6, Lecture Room 119 (1F)  Success in Research Career file
166 2018-06-18 10:00  E6-2. 2nd fl. #2502  Rydberg electromagnetically induced transparency and microwave-to-optical conversion using Rydberg atoms file
165 2018-06-14 10:00  E6-2, 2nd fl. #2502  Phonons and polariton-like particles in trapped ions for quantum computation and quantum simulation file
164 2018-06-01 11:00  E6-2. 1st fl. #1323  Topological phases in low-dimensional quantum materials file
163 2018-05-31 16:00  #1323, E6-2  Dynamic control of optical properties with gated-graphene metamaterials file
162 2018-05-29 16:00  #1323, E6-2  Investigation on metal nanostructure/semiconductor junction and its applications file
161 2018-05-17 13:30  E6-2. 1st fl. #1323  Quantum Spin Liquid in Kitaev Materials file
160 2018-05-11 16:00  E6-2. 1st fl. #1323  암페어 단위 재정의와 단전자 펌프 소자 개발 file
159 2018-05-11 14:30  E6-2. 1st fl. #1323  Disordered Floquet topological insulators file
158 2018-05-09 16:00  #1323, E6-2  Recent advances in thermoelectric bulk composites file
» 2018-04-13 10:00  #1323 (E6-2, 1st fl.)  Quantum meets Mechanics: from Quantum Information to Fundamental Research file
156 2018-04-11 16:00  #1323 (E6-2, 1st fl.)  Non-Gaussian states of multimode light generated via hybrid quantum information processing file
155 2018-04-11 13:30  #1323 (E6-2, 1st fl.)  Probing 3D Structure and Physical Properties of Materials at the Single-Atom Level file
154 2018-04-09 11:00  E6-2. 1st fl. #1323  Doublon-holon origin of the subpeaks at the Hubbard band edges file
153 2018-04-06 10:00  #2502, E6  Entanglement and thermalization in many-body systems: recent progress file
152 2018-03-16 16:00  E6-2. 1st fl. #1323  Van der Waals Heterostructures from Quantum Transport to Ultrafast Optoelectronics file