visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2018-04-13 10:00 
연사  
장소 #1323 (E6-2, 1st fl.) 

Physics Seminar

 

Quantum meets Mechanics: from Quantum Information to Fundamental Research

 

Dr. Sungkun Hong

Vienna Center for Quantum Science and Technology, University of Vienna

 

April 13 (Fri.), 10am

#1323 (E6-2, 1st fl.)

 

 

Abstract:

Studying quantum aspects of macroscopic moving bodies is a new emerging field in quantum physics. The main experimental approach is cavity optomechanics, where photons in the cavity are used to measure and manipulate motional states of mechanical oscillators. Cavity optomechanics, together with advancements in microfabrication of mechanical devices, has allowed us to observe and control mechanical resonators at the quantum level. This opens new exciting possibilities for quantum information science and for studying quantum physics in hitherto untested macroscopic scales.

In this talk, I will describe two different quantum optomechanics experiments that I have been doing in Vienna. First, I will present our progress in utilizing on-chip optomechanical devices as a new resource for quantum information. Using micro-fabricated silicon structures, we demonstrated the generation of quantum-correlated photon-phonon pairs, the generation and retrieval of single phonons, and the remote entanglement between two mechanical modes, paving the way for telecom-compatible optical quantum networks. Future directions of the work will also be discussed. Next, I will introduce a novel, hybrid optomechanical system consisting of optically levitated nanoparticles and micro-fabricated photonic crystal cavity. The system combines ultra-high mechanical quality of the levitated nanoparticle and strong optical transduction from the optical cavity. It thus will allow for quantum coherent experiments on particle’s motions even at room temperature. I will discuss the current status of the experiment as well as future plans of the work, particularly the matter-wave interferometry in an unexplored mass regime.

 

Contact: Yongseop Kang, Administration Team (T.2599)

 

Department of Physics

번호 날짜 연사 제목
공지 2025-02-24 16:00    2025년 봄학기 콜로키움 안내
공지 2025-02-27 16:00    2025년 봄 물리학과 특별세미나 (광학/응집물리 분야)
590 2025-04-16 13:00    오가노이드 사이언스(주) 여섯번째 세미나 시리즈 file
589 2025-04-03 16:00  윤홍 박사 (Corning Technology Center Korea)  Introduction of Corning Glass Innovation file
588 2025-03-28 11:00  명노준 교수 (조선대)  Quantum Transport in Strained-Engineered Graphene: Mesoscopic Perspective of Tunable Quantum Information Devices file
587 2025-03-27 16:00  김건우 교수 (중앙대)  Quantum dynamics in synthetic spaces file
586 2025-03-24 16:00  전응진 박사 (KIAS)  After the Higgs discovery file
585 2025-03-17 16:00  강동민 교수 (서울대)  String Theory, Quantum Field Theory and Physical Mathematics file
584 2025-03-14 14:00  Jeonghee Rho (SETI Institute)  JWST Imaging and Spectroscopy of the Supernova Remnant Cassiopeia A and Molecule and Dust Formation file
583 2025-03-13 16:00  고희동 교수(서울대)  분산관계 기반 파동 제어 구조물 설계 file
582 2025-03-11 12:00  Rak-Kyeong Seong (UNIST)  The AI Revolution for Quantum Fields and Strings: A Case Study
581 2025-03-10 16:00  Marko Rancic (University of Luxembourg)  Quantum computing for physics and optimization problems file
580 2025-03-07 11:00  Prof. Myunglae Jo  A tunable Mach-Zehnder interferometer in quantum hall graphene file
579 2025-02-27 16:00  김도헌 교수(서울대)  Toward reliably coherent spin qubits in silicon file
578 2025-02-25 14:00  Prof. Igor Di Marco  Dynamical mean-field theory for strongly correlated materials file
577 2025-02-17 16:00  Prof. Takehito Yokoyama  Unconventional spin-spin interaction mediated by Cooper pairs or phonons file
576 2025-02-03 14:00  Prof. Nobuyuki Yoshioka  Towards early fault-tolerant quantum computing file
575 2025-01-23 14:00  여영기 박사  Complete Polytype switching by super lubricant van der Waals cavity arrays file
574 2025-01-08 16:00  Dr. SangEun Han  Quantum impurity model for two-stage multipolar ordering and Fermi surface reconstruction
573 2024-12-17 15:00  Isaac H. Kim  Learning state preparation circuit for quantum phases of matter (Isaac H. Kim, UC Davis)