visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
seminar Date  
Date & Time  
Venue  
Speaker  

“Intertwined Orders in a Heavy-fermion metal”

 

Dr. Duk Young Kim

Los Alamos National Laboratory

 

Jul. 10th (Mon), 4pm

#1323(E6-2. 1st fl.)

 

The role of magnetic fluctuations is a major interest in recent studies on unconventional superconductivity. The heavy-fermion metal CeCoIn5 provides an interesting platform to study the relationship between magnetism and superconductivity. In the low-temperature and high-field corner of its H-T phase diagram, CeCoIn5 shows a spin-density-wave (SDW) magnetic order coexisting with the superconductivity. This antiferromagnetic order has single domain and switches its orientation very sharply depending on the direction of the magnetic field. This hypersensitivity of the magnetic domain induces a discontinuous change of the thermal conductivity when the magnetic field is rotated in the basal plane of the tetragonal crystal. This measurement reveals the presence of a p-wave Cooper-pair-density-wave (PDW) order that is intimately intertwined with the superconducting d-wave and magnetic SDW orders. The concept of intertwined orders is a new framework to understand high-Tc and iron-based superconductors. CeCoIn5 provides an important example of intertwined orders and establish its superconducting state as potentially a new state of matter.

 

[1]        D. Y. Kim, S.-z. Lin, F. Weickert, M. Kenzelmann, E. D. Bauer, F. Ronning, J. D. Thompson, and R. Movshovich, Physical Review X 6, 041059 (2016).

 

Contact: Prof. Eunseong Kim (T.2547)

20170710_김덕영.pdf

번호 seminar Date Venue 제목
공지     Spring 2019: Physics Seminar Serises
공지     Spring 2019: Physics Colloquium
공지   Seminar Room #1323  Fall 2017: Physics Seminar Serises
공지   Seminar Room 1501  Fall 2017: Physics Colloquium
145   #1323 (E6-2 1st fl.)  No-Insulation High Temperature Superconductor Magnet Technology for Compact, Reliable, and Low-Cost High Field DC Magnets
144   #1323(1st Floor. E6-2)  Transport spectroscopy for electronic bands in carbon-based nanomaterials with weak-bond contacts
143   #1323(E6-2 1st fl.)  Time scale dependent dynamics in InAs/InP quantum dot gain media
142   #1323(E6-2 1st fl.)  Laboratory experiments relevant to mesospheric clouds, Saturn’s rings & astrophysical jets
141   #1323(E6-2, 1st Fl.)  Tuning microwave cavities with biased nonlinear dielectrics for axion searches
140   #1323(E6-2, 1st fl.)  Understanding 3D tokamak physics towards advanced control of toroidal plasma
139   #1323(E6-2, 1st fl.)  Quantum information processing using quantum dots and photonic crystal cavities
138   #1323(E6-2, 1st fl.)  Polarized 3He, Polarized Neutrons and New Interactions beyond the Standard Model
137   #1323(E6-2, 1st fl.)  Polarized 3He, Polarized Neutrons and New Interactions beyond the Standard Model
136   #1323(E6-2, 1st fl.)  Quantum information processing using quantum dots and photonic crystal cavities
135   #1323(E6-2. 1st fl.  Shift Charge and Spin Photocurrents in Dirac Surface States of Topological Insulator
134   #1323(E6-2. 1st fl.  Shift Charge and Spin Photocurrents in Dirac Surface States of Topological Insulator
133   #1323(E6-2. 1st fl.  Shift Charge and Spin Photocurrents in Dirac Surface States of Topological Insulator
132   #1323(E6-2. 1st fl.)  Nonlocal collisional electron transport in partially ionized plasma generation, structure, and stability
131   #1323(E6-2. 1st fl.)  Isostatic magnetism
130   #1323(E6-2. 1st fl.)  Let there be topological superconductors
129   #1323(E6-2. 1st fl.)  Electronic quasiparticles in the quantum dimer model
128   #1323(E6-2. 1st fl.)  Low Dimensional Electrons: On the Road to Hybrid Quantum Systems
127   #1323(E6-2. 1st fl.)  Bandgap Engineering of Black Phosphorus
126   #1323(E6-2. 1st fl.)  Dirac fermions in condensed matters