visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
seminar Date  
Date & Time Feb. 1 (Wed.), 2p.m. 
Venue #1323(E6-2. 1st fl.) 
Speaker Dr. Michihisa Yamamoto, Department of Applied Physics, The University of Tokyo 

Quantum electron optics using flying electrons

 

Dr. Michihisa Yamamoto, Department of Applied Physics, The University of Tokyo

Feb. 1 (Wed.), 2p.m.  #1323(E6-2. 1st fl.)

 

Abstract: Quantum electron optics is a field in which one manipulates quantum states of propagating electrons. Combined with technologies for confining and manipulating single electrons, it allows us to investigate the scattering and interference of electrons in a unit of a single electron. The necessary elements of quantum electron optics experiments include single electron beam splitter, phase shifter, Coulomb coupler, single electron source and detector, spin-orbit path and electron-pair splitter.

In this talk, we present development of some of these elements. The beam splitter and phase shifter are implemented in our original two-path interferometer [1-3]. This interferometer has been shown to be the only reliable system for the measurement of the transmission phase shift of electrons [4,5]. To suppress decoherence induced by the electron-electron interaction and enhance the interference visibility, we recently developed a two-path interferometer of depleted channels, where single electrons are injected by means of surface acoustic waves (SAWs). We also confirmed that a single electron in a static quantum dot (single electron source) can be adiabatically transferred into a SAW-driven moving quantum dot [6], a necessary ingredient for achieving the high interference visibility of a single flying electron.

Quantum electron optics also targets the manipulation of spins of flying single electrons. We found that the spin information of one or two electrons can be transferred between distant quantum dots, which work as the single electron source and detector, with the fidelity limited only by the spin flips prior to the spin transfer [7,8]. We also realized an electron-pair splitter that can be used to split spin-entangled electrons in a moving dot into different moving dots. Combined with single spin manipulation using the spin-orbit interaction (spin-orbit path) [9], this splitter should allow for Bell measurement of electron spins.

This work is in collaboration with S. Takada (now at Institut Neel), R. Ito and K. Watanabe at the University of Tokyo, B. Bertrand, S. Hermelin, T. Meunier, and C. Bäuerle at Institut Neel, and A. Ludwig and A. D. Wieck at Ruhr-Universität Bochum.

 

[1] M. Yamamoto et al., Nature Nano. 7, 247 (2012)..

[2] A. Aharony et al., New J. Phys. 16, 083015 (2014).

[3] T. Bautze et al., Phys. Rev. B 89, 125432 (2014).

[4] S. Takada et al., Phys. Rev. Lett. 113, 126601 (2014).

[5] S. Takada et al., Appl. Phys. Lett. 107, 063101 (2015).

[6] B. Bertrand et al., Nanotechnology 27, 204001 (2016).

[7] S. Hermelin et al., Nature 477, 435 (2011).

[8] B. Bertrand et al., Nature Nano. 11, 672 (2016).

[9] H. Sanada et al., Nature Phys. 9, 280 (2013).

 

Contact: SunYoung Choi, (sunyoungchoi@kaist.ac.kr)

 

 

Center for Quantum Coherence in Condensed Matter, KAIST

번호 seminar Date Venue 제목
공지     Spring 2019: Physics Seminar Serises
공지     Spring 2019: Physics Colloquium
공지   Seminar Room #1323  Fall 2017: Physics Seminar Serises
공지   Seminar Room 1501  Fall 2017: Physics Colloquium
45   E6-2. #1323(1st fl.)  “The quest for novel high-temperature superconductors---Prospects and progress in iridate
44   E6-2. #2501(2nd fl.)  Exploring the phase diagram of BaBiO3: epic voyage of just another bad trip?
43   E6-2. #2502(2nd fl.)  Entanglement probe of two-impurity Kondo physics
42   E6-2. 1st fl. #1318  Advanced Optical Materials and Devices at NRL
41   E6-2. 1st fl. #1322  A new impurity solver for multi-orbital systems: adaptive truncation of the Hilbert space
40   E6-2. 1st fl. #1323  “Hybrid quantum systems with mechanical oscillators”
39   E6-2. 1st fl. #1323  Confinement of Superconducting Vortices in Magnetic Force Microscopy
38   E6-2. 1st fl. #1501  Theoretical Overview of Iron-based superconductors and its future
37   E6-2. 1st fl. #1501  Cotunneling drag effect in Coulomb-coupled quantum dots
36   E6-2. 1st fl. #1501  Interference of single charged particles without a loop and dynamic nonlocality
35   E6-2. 1st fl. #1501  Jan. Switching handedness of of chiral solitons in Z4 topological insulators
34   E6-2. 1st fl. #1501  Topological phases of matter in nonequilibrium: Topology of the Wannier-Stark ladder
33   E6-2. 2nd fl. #2501  Ultrafast X-ray Studies on Dynamics Matter in Extreme Conditions
32   E6-2. 5st fl. #1501  Spectroscopic studies of iron-based superconductors : what have we learned?
31   E6. #1501(1st fl.)  Aperiodic crystals in low dimensions
30   E6. #1501(1st fl.)  Graphene analogue in (111)- BaBiO3 bilayer heterostructures for topological electronics
29   KAIST Natural Science Building (E6-2), RM #4314  Radio frequency engineering
28   KAIST Natural Science Building (E6-5), EDU 3.0 Room(1st fl.)  Relational Logic (with applications to Quantum Mechanics, String Theory, Cosmology, Neutrino Oscillations, Statistical Mechanics)
27   KI Blgd.(E4), Lecture Room Red B501 (5F)  First Principles Approaches for Intermolecular Interactions: From Gas-Phase Dimers to Liquid Water and Molecular Crystal Polymorphism file
26   Lecture Hall, College of Natural Sciences [#1501,E6-2]  Topological Defects and Phase Transitions