visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
seminar Date  
Date & Time Nov. 10th(Thu) 4 p.m. 
Venue E6-2. #1323(1st fl.) 
Speaker Prof. Min Seok Jang, Electrical Engineering, KAIST 

Low Dimensional Active Plasmonics and Electron Optics in Graphene

 

Nov. 10th(Thu) 4 p.m., E6-2. #1323(1st fl.)
Prof. Min Seok Jang, Electrical Engineering, KAIST

 

 

The field of plasmonics has been attracting wide interest because it has provided routes to guide and localize light at nanoscales by utilizing metals as its major building block. Meanwhile, graphene, a two-dimensional lattice of carbon atoms, has been regarded as a candidate material for future electronic applications owing to its remarkably high carrier mobility and superior thermal properties. Both research fields have been growing rapidly, but quite independently. However, a closer look reveals that there are actually numerous similarities between them, and it is possible to extract useful applications from these analogies. Even more interestingly, these research fields are recently overlapping to create a new field of research, namely graphene plasmonics, which offers a unique platform to dynamically modulate light with unprecedented spatial and temporal resolutions.

 

In this talk, I will present a few examples of these intertwined topics. First, I will introduce “rainbow trapping” structures, broadband plasmonic slow light systems composed of single or double negative materials, and clarify the mode-conversion mechanism and the light-trapping performance by analyzing the dispersion relation. I will then show that electrons in graphene exhibit photon-like dynamics and how this analogy between photonics and electronics can inspire to solve an interesting problem of electron backscattering in graphene field effect transistors. Finally, I will present how the surface plasmons in graphene can be harnessed to create infrared metasurfaces that have tunable optical properties including extreme light-matter interaction and macroscopic modulation of light absorption and thermal emission.

 

Contact: Contact: Min-kyo Seo, Physics Dept. (T.2517)

 

번호 seminar Date Venue 제목
공지     Spring 2019: Physics Seminar Serises
공지     Spring 2019: Physics Colloquium
공지   Seminar Room #1323  Fall 2017: Physics Seminar Serises
공지   Seminar Room 1501  Fall 2017: Physics Colloquium
145   #1323 (E6-2 1st fl.)  No-Insulation High Temperature Superconductor Magnet Technology for Compact, Reliable, and Low-Cost High Field DC Magnets
144   #1323(1st Floor. E6-2)  Transport spectroscopy for electronic bands in carbon-based nanomaterials with weak-bond contacts
143   #1323(E6-2 1st fl.)  Laboratory experiments relevant to mesospheric clouds, Saturn’s rings & astrophysical jets
142   #1323(E6-2 1st fl.)  Time scale dependent dynamics in InAs/InP quantum dot gain media
141   #1323(E6-2, 1st Fl.)  Tuning microwave cavities with biased nonlinear dielectrics for axion searches
140   #1323(E6-2, 1st fl.)  Understanding 3D tokamak physics towards advanced control of toroidal plasma
139   #1323(E6-2, 1st fl.)  Quantum information processing using quantum dots and photonic crystal cavities
138   #1323(E6-2, 1st fl.)  Polarized 3He, Polarized Neutrons and New Interactions beyond the Standard Model
137   #1323(E6-2, 1st fl.)  Polarized 3He, Polarized Neutrons and New Interactions beyond the Standard Model
136   #1323(E6-2, 1st fl.)  Quantum information processing using quantum dots and photonic crystal cavities
135   #1323(E6-2. 1st fl.  Shift Charge and Spin Photocurrents in Dirac Surface States of Topological Insulator
134   #1323(E6-2. 1st fl.  Shift Charge and Spin Photocurrents in Dirac Surface States of Topological Insulator
133   #1323(E6-2. 1st fl.  Shift Charge and Spin Photocurrents in Dirac Surface States of Topological Insulator
132   #1323(E6-2. 1st fl.)  Nonlocal collisional electron transport in partially ionized plasma generation, structure, and stability
131   #1323(E6-2. 1st fl.)  Isostatic magnetism
130   #1323(E6-2. 1st fl.)  Let there be topological superconductors
129   #1323(E6-2. 1st fl.)  Electronic quasiparticles in the quantum dimer model
128   #1323(E6-2. 1st fl.)  Low Dimensional Electrons: On the Road to Hybrid Quantum Systems
127   #1323(E6-2. 1st fl.)  Bandgap Engineering of Black Phosphorus
126   #1323(E6-2. 1st fl.)  Dirac fermions in condensed matters