visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2016-10-18 15:00 
연사  
장소 E6-2. 1st fl. #1323 

“Hybrid quantum systems with mechanical oscillators”

 

Dr. JunHo Suh, Korea Research Institute of Standards and Science
Oct. 18 (Tue.), 3PM, E6-2. 1st fl. #1323

 

Abstract:

Quantum machines are actively pursued to harness quantum coherence and entanglement as new resources for information processing and precision sensing. Among those activities, hybrid quantum systems are recognized as a promising platform for building multi-functional quantum machines by connecting quantum states in different physical domains, and mechanical oscillators are accepted as important components in the quantum hybrids[1]. In this talk, I review recent examples of hybrid quantum systems involving mechanical oscillators strongly coupled to electrons and photons. In the first part, a quantum electro-mechanical system is introduced. A cooper-pair box qubit is electrostatically coupled to a nanomechanical oscillator. A dispersive measurement of qubit states is achievable through high-quality read-out of nanomechanical motion, which also maintains qubit coherence proved via microwave spectroscopy and Landau-Zener interference. In the second part, mechanical oscillators coupled to microwave photons, or "quantum opto-mechanical systems", are described, where radiation pressure mediates the interaction between photons and the mechanical oscillator.  Photons act as a probe for mechanical motion in this case, and a fundamental limit in measurement sensitivity arises due to Heisenberg's uncertainty principle, as known as quantum standard limit(SQL). By carefully measuring mechanical motion in quadratures, we identify the fundamental back-action from photons which mandates SQL, and also demonstrate a novel scheme known as quantum non-demolition measurement (QND) which allows a precise measurement without back-action in one quadrature of motion[3]. When the coupling between the microwave photons and mechanical motion is strong enough, the back-action from photons start modifying quantum noise in mechanical oscillators and produced mechanical quantum squeezed states[4,5]. Finally, it is expected that one could approach ultra-strong coupling regime as photon-mechanical oscillator coupling strength increases, where single photon coupled to mechanical motion dominates the hybrid system. Mechanical states in the ultra-strong coupling limit deviate from well-known number states which could open a new paradigm for controlling mechanical quantum states[6]. A quantum dot system embedded in a nanowire is proposed to be a candidate to reach this interesting regime, and our recent progress toward this direction is dissussed.

 

[1] Kurizki et.al., PNAS 112, 3866-3873 (2015).
[2] LaHaye et.al., Nature 459, 960-964 (2009).
[3] Suh et.al., Science 344, 1262-1265 (2014).
[4] Wollman et.al., Science 349, 952-955 (2015).
[5] Lei et.al., PRL 117, 100801 (2016).
[6] Nation et.al., PRA 93, 022510 (2016).

 

Contact: SunYoung Choi, (sunyoungchoi@kaist.ac.kr)
Center for Quantum Coherence in Condensed Matter, KAIST

번호 날짜 연사 제목
공지 2025-02-24 16:00    2025년 봄학기 콜로키움 안내
공지 2025-02-27 16:00    2025년 봄 물리학과 특별세미나 (광학/응집물리 분야)
605 2019-09-18 16:00    Fall 2019: Physics Seminar Serises file
604 2019-09-02 16:00    Fall 2019: Physics Colloquium file
603 2024-01-26 15:00    In-situ 4D-STEM studies on surface reconstruction and polarization switching of perovskite oxides
602 2020-09-24 09:00    (CAPP/IBS)Searching for Dark Matter with a Superconducting Qubit , Cryogenic Microwave Circuit Development at the NSTU file
601 2021-01-28 18:00    Quantum metamaterials: concept, theory, prototypes and possible applications file
600 2023-09-18 11:00    Magic polarisation trapping of polar molecules for tunable dipolar interactions file
599 2015-12-09 11:00    Functional Imaging & Monitoring of Brain & Breast with Diffuse Light
598 2015-12-09 14:00    SWELLABLE COLLOIDAL PARTICLES ARE SWELL
597 2020-09-28 17:30    KAIST Global Forum for Spin and Beyond(Fourth Forum) file
596 2024-03-28 11:00    Geometric characterization of thermoelectric performance of two-dimensional quadratic band-crossing semimetals
595 2023-01-12 16:00    Spin wavepackets in the Kagome ferromagnet Fe3Sn2: propagation and precursors
594 2021-04-19 19:00    Evidence of Electrical Switching in Antiferromagnets and Coherent Spin Pumping file
593 2017-12-14 15:00    Exploring the Universe via GWs in the era of multi-messenger astronomy
592 2019-10-25 15:00    Physics Seminar file
591 2024-11-21 11:00  Daniel L. Jafferis  3d Gravity and Tensor Model file
590 2023-10-04 16:00    [High-Energy Theory Seminar] Moving towards quantum technologies: the case of quantum batteries
589 2024-06-05 10:00    Moir\’e fractals in supermoir\’e structures
588 2016-12-12 13:30    “Possible symmetry in the phase diagrams of electron- & hole-doped cuprate high-Tc superconductors”
587 2025-06-05 10:00  Dr . On Kim (University of Mississippi)  The Final Result from the Muon g-2 Experiment at Fermilab: The World’s Most Precise Measurement of the Muon Magnetic Anomaly file
586 2016-04-06 15:30    Superconducting Quantum Interference Devices for Precision Detection