visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2016-10-18 15:00 
일시 Oct. 18 (Tue.), 3PM 
장소 E6-2. 1st fl. #1323 
연사 Dr. JunHo Suh, Korea Research Institute of Standards and Science 

“Hybrid quantum systems with mechanical oscillators”

 

Dr. JunHo Suh, Korea Research Institute of Standards and Science
Oct. 18 (Tue.), 3PM, E6-2. 1st fl. #1323

 

Abstract:

Quantum machines are actively pursued to harness quantum coherence and entanglement as new resources for information processing and precision sensing. Among those activities, hybrid quantum systems are recognized as a promising platform for building multi-functional quantum machines by connecting quantum states in different physical domains, and mechanical oscillators are accepted as important components in the quantum hybrids[1]. In this talk, I review recent examples of hybrid quantum systems involving mechanical oscillators strongly coupled to electrons and photons. In the first part, a quantum electro-mechanical system is introduced. A cooper-pair box qubit is electrostatically coupled to a nanomechanical oscillator. A dispersive measurement of qubit states is achievable through high-quality read-out of nanomechanical motion, which also maintains qubit coherence proved via microwave spectroscopy and Landau-Zener interference. In the second part, mechanical oscillators coupled to microwave photons, or "quantum opto-mechanical systems", are described, where radiation pressure mediates the interaction between photons and the mechanical oscillator.  Photons act as a probe for mechanical motion in this case, and a fundamental limit in measurement sensitivity arises due to Heisenberg's uncertainty principle, as known as quantum standard limit(SQL). By carefully measuring mechanical motion in quadratures, we identify the fundamental back-action from photons which mandates SQL, and also demonstrate a novel scheme known as quantum non-demolition measurement (QND) which allows a precise measurement without back-action in one quadrature of motion[3]. When the coupling between the microwave photons and mechanical motion is strong enough, the back-action from photons start modifying quantum noise in mechanical oscillators and produced mechanical quantum squeezed states[4,5]. Finally, it is expected that one could approach ultra-strong coupling regime as photon-mechanical oscillator coupling strength increases, where single photon coupled to mechanical motion dominates the hybrid system. Mechanical states in the ultra-strong coupling limit deviate from well-known number states which could open a new paradigm for controlling mechanical quantum states[6]. A quantum dot system embedded in a nanowire is proposed to be a candidate to reach this interesting regime, and our recent progress toward this direction is dissussed.

 

[1] Kurizki et.al., PNAS 112, 3866-3873 (2015).
[2] LaHaye et.al., Nature 459, 960-964 (2009).
[3] Suh et.al., Science 344, 1262-1265 (2014).
[4] Wollman et.al., Science 349, 952-955 (2015).
[5] Lei et.al., PRL 117, 100801 (2016).
[6] Nation et.al., PRA 93, 022510 (2016).

 

Contact: SunYoung Choi, (sunyoungchoi@kaist.ac.kr)
Center for Quantum Coherence in Condensed Matter, KAIST

번호 날짜 장소 제목
125 2017-04-06 16:00  IBS CAPP seminar room, Creation Hall (3F), KAIST Munji Campus  For whom the Belle tolls
124 2017-04-05 12:00  Room 101, Creative Learning Bldg.(E11)  2017년 4월 첫수 융합포럼 개최 안내(물리학과 & 원자력 및 양자공학과 공동 개최)/The First Wednesday Multidisciplinary Forum in April 2017 organized by Dept. of Physics & Dept. of Nuclear & Quantum Engineering file
123 2017-03-24 16:00  #1323 (1st fl. E6-2)  Graphene based nano electronics and nano electromechanics; focusing on precise control of nano structures for studying accurate physical properties
122 2017-03-24 14:30  #1323 (1st fl. E6-2).  Topological Dynamics
121 2017-03-21 16:00  Seminar Room 1323  Spring 2017: Physics Seminar Serises file
120 2017-03-06 16:00  Seminar Room 1501  Spring 2017: Physics Colloquium file
119 2017-03-02 16:00  #1323(E6-2. 1st fl.)  “Progress in the comparison of ARPES to DMFT for d and f strongly correlated electron systems”
118 2017-02-01 14:00  #1323(E6-2. 1st fl.)  Quantum electron optics using flying electrons
117 2017-01-09 16:00  Lecture Hall, College of Natural Sciences [#1501,E6-2]  Topological Defects and Phase Transitions" file
116 2016-12-8 16:00  #1323(E6-2. 1st fl.)  Dynamical Resonance between Two Optical Cavities via Optomechanical Oscillator
115 2016-12-12 13:30  1:30p.m. #1323(E6-2. 1st fl.)  “Possible symmetry in the phase diagrams of electron- & hole-doped cuprate high-Tc superconductors”
114 2016-12-09 16:00  #1323(E6-2. 1st fl.  Shift Charge and Spin Photocurrents in Dirac Surface States of Topological Insulator
113 2016-12-09 13:30  #1323(E6-2. 1st fl.)  Entanglement area law in strongly-correlated systems
112 2016-11-29 16:00  #1323(E6-2. 1st fl.)  Symmetry Protected Kondo Metals and Their Phase Transitions
111 2016-11-24 16:00  #1323(E6-2. 1st fl.)  Harmonic oscillator physics with single atoms in a state-selective optical potential
110 2016-11-18 10:30  #5318(5th fl.)  Non-equilibrium many-body spin dynamics in diamond
109 2016-11-16 16:00  #1323(E6-2. 1st fl.)  Realizing Haldane Model in Fe-based Honeycomb Ferromagnetic Insulators
108 2016-11-11 16:00  #1323(E6-2. 1st fl.)  Dirac fermions in condensed matters
107 2016-11-11 13:30  #1323(E6-2. 1st fl.)  Bandgap Engineering of Black Phosphorus
106 2016-11-10 16:00  E6-2. #1323(1st fl.)  Low Dimensional Active Plasmonics and Electron Optics in Graphene