visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나

Isostatic magnetism

2016.07.04 22:02

Physics 조회 수:4872

날짜 2016-07-08 11:00 
연사  
장소 #1323(E6-2. 1st fl.) 

Isostatic magnetism

 

Jul. 08 (Fri.) 11:00 AM, #1323(E6-2. 1st fl.)
Dr. Michael Lawler(Binghampton Univ. / Cornell Univ.)

 

Abstract: Recently, a peculiar state of mechanical (phonon) systems, known as isostatic lattices, was both proposed[1] and fabricated as a metamaterial[2]. This state is on the brink of mechanical collapse and remarkably has special topological properties that guarantee the existence of soliton-like zero modes or edge modes with open boundary conditions. It is unlikely these topological phonons will be found in any solid state system since they are not on the brink of mechanical collapse. In this talk, I will discuss my group's research[3] into extending this physics to magnetic systems where ``mechanical collapse'' is replaced with the loss of magnetic order due to frustration.  I will prove mathematically that indeed an isostatic magnetic exists, a proof that remarkably employs a supersymmetry between magnons and an invented fermionic degree of freedom I have dubbed magninos. I will conclude with a discussion of the possibilities of finding an isostatic magnet among the kagome and distorted kagome families of antiferromagnets and the potential new phenomena that may be observed in such a material.


[1] C. L. Kane and T. C. Lubensky, "Topological boundary modes in isostatic lattices", Nature Physics 10, 39 (2013).
[2] B. G. Chen, N. Upadhyaya, V. Vitelli, "Non-linear conduction via solitons in a topological mechanical insulator", PNAS 111, 13004 (2014).
[3] M. J. Lawler "Supersymmetry protected phases of isostatic lattices and kagome antiferromagnets", Unpublished, see arXiv:1510.03697.


Contact: Eun Gook Moon, Physics Dept., (egmoon@kaist.ac.kr)

번호 날짜 연사 제목
공지 2025-02-24 16:00    2025년 봄학기 콜로키움 안내
공지 2025-02-27 16:00    2025년 봄 물리학과 특별세미나 (광학/응집물리 분야)
84 2016-07-08 14:00    Electronic quasiparticles in the quantum dimer model
» 2016-07-08 11:00    Isostatic magnetism
82 2016-07-07 14:00    Let there be topological superconductors
81 2016-06-16 16:00    Quantum information processing using quantum dots and photonic crystal cavities
80 2016-06-14 16:00    Photonic quantum network based on multimode squeezed vacuums and single-photon subtraction
79 2016-06-14 15:00    No-Insulation High Temperature Superconductor Magnet Technology for Compact, Reliable, and Low-Cost High Field DC Magnets
78 2016-06-01 16:00    Laboratory experiments relevant to mesospheric clouds, Saturn’s rings & astrophysical jets
77 2016-06-01 10:30    Welcome to Nature Photonics
76 2016-05-31 16:00    Understanding 3D tokamak physics towards advanced control of toroidal plasma
75 2016-05-24 16:00    Electronic and magnetic properties of 2D transition-metal thiophosphates and tunability of magnetic order with carrier density
74 2016-05-19 16:00    Nonlinear/quantum optical effect in silicon nano-photonics
73 2016-05-19 15:00    The CERN Resonant WISP Search: Development, Results and Lesson-Learned
72 2016-05-17 11:00    The CERN Resonant WISP Search: Development, Results and Lesson-Learned
71 2016-05-16 16:00    Tuning microwave cavities with biased nonlinear dielectrics for axion searches
70 2016-05-13 16:00    Graphene analogue in (111)- BaBiO3 bilayer heterostructures for topological electronics
69 2016-05-13 13:30    Aperiodic crystals in low dimensions
68 2016-05-11 16:00    The quest for novel high-temperature superconductors---Prospects and progress in iridates
67 2016-04-28 15:00    Lattice/Spin/Charge Coupling in 5d Pyrochlore Cd2Os2O7
66 2016-04-26 16:00    Transport spectroscopy for electronic bands in carbon-based nanomaterials with weak-bond contacts
65 2016-04-19 14:00    Nonlocal collisional electron transport in partially ionized plasma generation, structure, and stability