visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
seminar Date  
Date & Time Jun 1 (Wed) 4 PM 
Venue #1323(E6-2 1st fl.) 
Speaker Kil-Byoung Chai, Caltech 

Laboratory experiments relevant to mesospheric clouds, Saturn’s rings & astrophysical jets

 

Jun 1 (Wed) 4 PM, #1323(E6-2 1st fl.)
Kil-Byoung Chai, Caltech

 

An rf discharge with liquid nitrogen cooled electrodes and injected water vapor has been used to study nucleation, growth, and dynamics of water-ice grains spontaneously formed in a plasma environment. Examples of water-ice dusty plasmas include polar mesospheric clouds, Saturn’s diffusive rings, and protoplanetary disks. We found that fast grain growth to nonspherical shape with up to 5:1 elongation occurs when the water molecule mean free path exceeds the ice grain screening length. Ice grains grow largest in light gas plasmas, up to 500 µm long in hydrogen plasma. Elongated ice grains align along the plasma ambipolar electric field. Microscope images reveal that the ice grains have fractal nature with 1.7 typical fractal dimension. After the growth process ends, poloidal vortex motion of ice grains is observed and is shown to result from the non-conservative ion drag force.

The Caltech jet experiment produces low beta, high Lundquist number, high density (~1022 m-3) MHD-driven plasma jets and so is similar to astrophysical jets and solar corona loops. We have recently studied various phenomena associated with magnetic reconnection induced by a kink-driven Rayleigh-Taylor instability using comprehensive diagnostics. The results of this study include the following: A spatially localized EUV burst is imaged at the presumed position of fast magnetic reconnection in a plasma jet; the existence of this localized EUV burst indicates strong localized electron heating. Circularly polarized high frequency whistler waves are simultaneously observed indicating that Hall dynamics likely governs the reconnection. Spectroscopic measurement shows simultaneous fast ion heating. We propose that the electron heating is consistent with Ohmic dissipation while the ion heating is consistent with ion trajectories becoming stochastic.

 

번호 seminar Date Venue 제목
공지     Spring 2019: Physics Seminar Serises
공지     Spring 2019: Physics Colloquium
공지   Seminar Room #1323  Fall 2017: Physics Seminar Serises
공지   Seminar Room 1501  Fall 2017: Physics Colloquium
145   #1323 (E6-2 1st fl.)  No-Insulation High Temperature Superconductor Magnet Technology for Compact, Reliable, and Low-Cost High Field DC Magnets
144   #1323(1st Floor. E6-2)  Transport spectroscopy for electronic bands in carbon-based nanomaterials with weak-bond contacts
»   #1323(E6-2 1st fl.)  Laboratory experiments relevant to mesospheric clouds, Saturn’s rings & astrophysical jets
142   #1323(E6-2 1st fl.)  Time scale dependent dynamics in InAs/InP quantum dot gain media
141   #1323(E6-2, 1st Fl.)  Tuning microwave cavities with biased nonlinear dielectrics for axion searches
140   #1323(E6-2, 1st fl.)  Understanding 3D tokamak physics towards advanced control of toroidal plasma
139   #1323(E6-2, 1st fl.)  Quantum information processing using quantum dots and photonic crystal cavities
138   #1323(E6-2, 1st fl.)  Polarized 3He, Polarized Neutrons and New Interactions beyond the Standard Model
137   #1323(E6-2, 1st fl.)  Polarized 3He, Polarized Neutrons and New Interactions beyond the Standard Model
136   #1323(E6-2, 1st fl.)  Quantum information processing using quantum dots and photonic crystal cavities
135   #1323(E6-2. 1st fl.  Shift Charge and Spin Photocurrents in Dirac Surface States of Topological Insulator
134   #1323(E6-2. 1st fl.  Shift Charge and Spin Photocurrents in Dirac Surface States of Topological Insulator
133   #1323(E6-2. 1st fl.  Shift Charge and Spin Photocurrents in Dirac Surface States of Topological Insulator
132   #1323(E6-2. 1st fl.)  Nonlocal collisional electron transport in partially ionized plasma generation, structure, and stability
131   #1323(E6-2. 1st fl.)  Isostatic magnetism
130   #1323(E6-2. 1st fl.)  Let there be topological superconductors
129   #1323(E6-2. 1st fl.)  Electronic quasiparticles in the quantum dimer model
128   #1323(E6-2. 1st fl.)  Low Dimensional Electrons: On the Road to Hybrid Quantum Systems
127   #1323(E6-2. 1st fl.)  Bandgap Engineering of Black Phosphorus
126   #1323(E6-2. 1st fl.)  Dirac fermions in condensed matters