visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나

Axion Search

2015.07.29 14:28

admin 조회 수:192

seminar Date  
Date & Time 2015/08/03 10:30AM 
Venue Seminar Room(#1323) 
Speaker Dr. Jonghee Yoo (Fermi National Accelerator Laboratory, USA ) 

Axion Search

2015/08/03(MON), 10:30 AM, Seminar Room(#1323)
Dr. Jonghee Yoo, Fermi National Accelerator Laboratory, USA

 

 

The axion has been postulated to solve the strong-CP problem in quantum chromodynamics. The strong-CP problem is manifested by the null observation of the neutron’s electric dipole moment. The Peccei-Quinn U(1) symmetry breaking mechanism was suggested as a solution to the problem. The mechanism leaves a pseudo-Goldstone boson field, interpreted as the axion. Although the original Peccei-Quinn axion model has been ruled out, “invisible” axion model allows a broad range of axion masses and axion-matter couplings. It is widely accepted that the invisible axion is truly the elegant solution to the Strong-CP problem. Moreover, the non-thermal axion production mechanism in the early Universe suggests the axion as a cold dark matter candidate. Especially a light axion is an ideal dark matter candidate which would have been produced during the Big Bang. I will discuss the axion search projects with examples drawn from experiments that I was involved in.

 

Contact: Yoonsoo, Administration Office. Tel. 2599

번호 seminar Date Venue 제목
공지     Spring 2019: Physics Seminar Serises
공지     Spring 2019: Physics Colloquium
공지   Seminar Room #1323  Fall 2017: Physics Seminar Serises
공지   Seminar Room 1501  Fall 2017: Physics Colloquium
145   #1323 (E6-2 1st fl.)  No-Insulation High Temperature Superconductor Magnet Technology for Compact, Reliable, and Low-Cost High Field DC Magnets
144   #1323(1st Floor. E6-2)  Transport spectroscopy for electronic bands in carbon-based nanomaterials with weak-bond contacts
143   #1323(E6-2 1st fl.)  Time scale dependent dynamics in InAs/InP quantum dot gain media
142   #1323(E6-2 1st fl.)  Laboratory experiments relevant to mesospheric clouds, Saturn’s rings & astrophysical jets
141   #1323(E6-2, 1st Fl.)  Tuning microwave cavities with biased nonlinear dielectrics for axion searches
140   #1323(E6-2, 1st fl.)  Understanding 3D tokamak physics towards advanced control of toroidal plasma
139   #1323(E6-2, 1st fl.)  Quantum information processing using quantum dots and photonic crystal cavities
138   #1323(E6-2, 1st fl.)  Polarized 3He, Polarized Neutrons and New Interactions beyond the Standard Model
137   #1323(E6-2, 1st fl.)  Polarized 3He, Polarized Neutrons and New Interactions beyond the Standard Model
136   #1323(E6-2, 1st fl.)  Quantum information processing using quantum dots and photonic crystal cavities
135   #1323(E6-2. 1st fl.  Shift Charge and Spin Photocurrents in Dirac Surface States of Topological Insulator
134   #1323(E6-2. 1st fl.  Shift Charge and Spin Photocurrents in Dirac Surface States of Topological Insulator
133   #1323(E6-2. 1st fl.  Shift Charge and Spin Photocurrents in Dirac Surface States of Topological Insulator
132   #1323(E6-2. 1st fl.)  Nonlocal collisional electron transport in partially ionized plasma generation, structure, and stability
131   #1323(E6-2. 1st fl.)  Isostatic magnetism
130   #1323(E6-2. 1st fl.)  Let there be topological superconductors
129   #1323(E6-2. 1st fl.)  Electronic quasiparticles in the quantum dimer model
128   #1323(E6-2. 1st fl.)  Low Dimensional Electrons: On the Road to Hybrid Quantum Systems
127   #1323(E6-2. 1st fl.)  Bandgap Engineering of Black Phosphorus
126   #1323(E6-2. 1st fl.)  Dirac fermions in condensed matters