visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2015-08-04 11:00 
연사  
장소 B501, Room Red, KI bldg. 5nd fl. 

Propagation of ultrasound through two- and three-dimensional strongly scattering media

2015/08/04(TUE), 11PM, B501(Room Red, KI bldg. 5nd fl.)
Dr. Eric Jin Ser Lee,  Department of Physics and Astronomy, Univ. of Manitoba, Canada

 

 

During my Ph. D study at the University of Manitoba, I have investigated the propagation of ultrasound through two- and three-dimensional strongly scattering media, with either random or ordered internal structures, through experiments and finite element simulations.  All media investigated have strong scattering resonances, leading to novel transport behaviour. 

 

The two-dimensional samples consist of nylon rods immersed in water.  Nylon fishing lines under tension are used as two-dimensional scatterers.  Note that since the rods are parallel and of uniform diameter, there is negligible scattering of waves out of the plane perpendicular to the rods, so that the system appears two-dimensional from the wave point of view for propagation in this plane.  When nylon rods are surrounded by water, they exhibit strong scattering resonances.  In such an environment, the nylon scattering resonance can couple with the propagating mode through water to create a bandgap.  This is a called hybridization gap.  When the nylon rods are arranged in a triangular lattice to form two-dimensional phononic crystals, very unusual dispersion properties are observed when the lattice constant is adjusted so that Bragg and hybridization gaps overlap in frequency.  This behaviour is attributed to the competition between two co-existing propagating modes, leading to a new method for tuning bandgap properties and adjusting the transmission by orders of magnitude. 

 

The three-dimensional media were fabricated by brazing aluminum beads together to form a disordered porous solid network with either vacuum in the pores.  This system is of particular interest because it has been shown to exhibit Anderson localization of ultrasound.  With such system, the density of states (DOS) was investigated.  It is the number of vibrational states per unit frequency range per unit volume.  The DOS is a fundamental property of any system and can influence not only wave transport but also the possibility of forming localized states.  The DOS was measured by directly counting the modes in the frequency domain.  At intermediate frequencies, the DOS was found to be approximately independent of frequency, while at higher frequencies, the frequency dependence was consistent with traditional DOS models.  Furthermore, the level statistics, which describe the distribution of the separations between neighbour modes in frequency, of the modes was investigated to determine the conditions under which level repulsion occurs.  As the sample becomes larger to have more modes, the modes start to overlap and repel each other so that level repulsion effects become important.  Consequently, the level statistics were observed to become closer to GOE predictions as the sample size increased.  For the last, as there is a transition from diffusive to localized regime around the lower bandgap edge, a transition from GOE to Poisson distribution is observed.

 

Contact: Prof. YongKeun Park, Physics Dept., (yk.park@kaist.ac.kr)

 

 

번호 날짜 연사 제목
공지 2025-04-29 10:00  Dr. Yeonju Go (Brookhaven National Laboratory)  Exploring the Hottest Matter in the Universe: Quark-Gluon Plasma through Hard Probes and Artificial Intelligence
공지 2025-05-01 16:00  Dr. Inwook Kim (Lawrence Livermore National Laboratory)  BSM Physics Search with Quantum Sensors
공지 2025-02-24 16:00    2025년 봄학기 콜로키움 안내
공지 2025-02-27 16:00    2025년 봄 물리학과 특별세미나 (광학/응집물리 분야)
125 2017-04-06 16:00    For whom the Belle tolls
124 2017-04-05 12:00    2017년 4월 첫수 융합포럼 개최 안내(물리학과 & 원자력 및 양자공학과 공동 개최)/The First Wednesday Multidisciplinary Forum in April 2017 organized by Dept. of Physics & Dept. of Nuclear & Quantum Engineering file
123 2017-03-24 16:00    Graphene based nano electronics and nano electromechanics; focusing on precise control of nano structures for studying accurate physical properties
122 2017-03-24 14:30    Topological Dynamics
121 2017-03-21 16:00    Spring 2017: Physics Seminar Serises file
120 2017-03-06 16:00    Spring 2017: Physics Colloquium file
119 2017-03-02 16:00    “Progress in the comparison of ARPES to DMFT for d and f strongly correlated electron systems”
118 2017-02-01 14:00    Quantum electron optics using flying electrons
117 2017-01-09 16:00    Topological Defects and Phase Transitions" file
116 2016-12-8 16:00    Dynamical Resonance between Two Optical Cavities via Optomechanical Oscillator
115 2016-12-12 13:30    “Possible symmetry in the phase diagrams of electron- & hole-doped cuprate high-Tc superconductors”
114 2016-12-09 16:00    Shift Charge and Spin Photocurrents in Dirac Surface States of Topological Insulator
113 2016-12-09 13:30    Entanglement area law in strongly-correlated systems
112 2016-11-29 16:00    Symmetry Protected Kondo Metals and Their Phase Transitions
111 2016-11-24 16:00    Harmonic oscillator physics with single atoms in a state-selective optical potential
110 2016-11-18 10:30    Non-equilibrium many-body spin dynamics in diamond
109 2016-11-16 16:00    Realizing Haldane Model in Fe-based Honeycomb Ferromagnetic Insulators
108 2016-11-11 16:00    Dirac fermions in condensed matters
107 2016-11-11 13:30    Bandgap Engineering of Black Phosphorus
106 2016-11-10 16:00    Low Dimensional Active Plasmonics and Electron Optics in Graphene