visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2015-08-04 11:00 
연사  
장소 B501, Room Red, KI bldg. 5nd fl. 

Propagation of ultrasound through two- and three-dimensional strongly scattering media

2015/08/04(TUE), 11PM, B501(Room Red, KI bldg. 5nd fl.)
Dr. Eric Jin Ser Lee,  Department of Physics and Astronomy, Univ. of Manitoba, Canada

 

 

During my Ph. D study at the University of Manitoba, I have investigated the propagation of ultrasound through two- and three-dimensional strongly scattering media, with either random or ordered internal structures, through experiments and finite element simulations.  All media investigated have strong scattering resonances, leading to novel transport behaviour. 

 

The two-dimensional samples consist of nylon rods immersed in water.  Nylon fishing lines under tension are used as two-dimensional scatterers.  Note that since the rods are parallel and of uniform diameter, there is negligible scattering of waves out of the plane perpendicular to the rods, so that the system appears two-dimensional from the wave point of view for propagation in this plane.  When nylon rods are surrounded by water, they exhibit strong scattering resonances.  In such an environment, the nylon scattering resonance can couple with the propagating mode through water to create a bandgap.  This is a called hybridization gap.  When the nylon rods are arranged in a triangular lattice to form two-dimensional phononic crystals, very unusual dispersion properties are observed when the lattice constant is adjusted so that Bragg and hybridization gaps overlap in frequency.  This behaviour is attributed to the competition between two co-existing propagating modes, leading to a new method for tuning bandgap properties and adjusting the transmission by orders of magnitude. 

 

The three-dimensional media were fabricated by brazing aluminum beads together to form a disordered porous solid network with either vacuum in the pores.  This system is of particular interest because it has been shown to exhibit Anderson localization of ultrasound.  With such system, the density of states (DOS) was investigated.  It is the number of vibrational states per unit frequency range per unit volume.  The DOS is a fundamental property of any system and can influence not only wave transport but also the possibility of forming localized states.  The DOS was measured by directly counting the modes in the frequency domain.  At intermediate frequencies, the DOS was found to be approximately independent of frequency, while at higher frequencies, the frequency dependence was consistent with traditional DOS models.  Furthermore, the level statistics, which describe the distribution of the separations between neighbour modes in frequency, of the modes was investigated to determine the conditions under which level repulsion occurs.  As the sample becomes larger to have more modes, the modes start to overlap and repel each other so that level repulsion effects become important.  Consequently, the level statistics were observed to become closer to GOE predictions as the sample size increased.  For the last, as there is a transition from diffusive to localized regime around the lower bandgap edge, a transition from GOE to Poisson distribution is observed.

 

Contact: Prof. YongKeun Park, Physics Dept., (yk.park@kaist.ac.kr)

 

 

번호 날짜 연사 제목
공지 2025-04-29 10:00  Dr. Yeonju Go (Brookhaven National Laboratory)  Exploring the Hottest Matter in the Universe: Quark-Gluon Plasma through Hard Probes and Artificial Intelligence
공지 2025-05-01 16:00  Dr. Inwook Kim (Lawrence Livermore National Laboratory)  BSM Physics Search with Quantum Sensors
공지 2025-02-24 16:00    2025년 봄학기 콜로키움 안내
공지 2025-02-27 16:00    2025년 봄 물리학과 특별세미나 (광학/응집물리 분야)
165 2018-06-14 10:00    Phonons and polariton-like particles in trapped ions for quantum computation and quantum simulation file
164 2018-06-01 11:00    Topological phases in low-dimensional quantum materials file
163 2018-05-31 16:00    Dynamic control of optical properties with gated-graphene metamaterials file
162 2018-05-29 16:00    Investigation on metal nanostructure/semiconductor junction and its applications file
161 2018-05-17 13:30    Quantum Spin Liquid in Kitaev Materials file
160 2018-05-11 16:00    암페어 단위 재정의와 단전자 펌프 소자 개발 file
159 2018-05-11 14:30    Disordered Floquet topological insulators file
158 2018-05-09 16:00    Recent advances in thermoelectric bulk composites file
157 2018-04-13 10:00    Quantum meets Mechanics: from Quantum Information to Fundamental Research file
156 2018-04-11 16:00    Non-Gaussian states of multimode light generated via hybrid quantum information processing file
155 2018-04-11 13:30    Probing 3D Structure and Physical Properties of Materials at the Single-Atom Level file
154 2018-04-09 11:00    Doublon-holon origin of the subpeaks at the Hubbard band edges file
153 2018-04-06 10:00    Entanglement and thermalization in many-body systems: recent progress file
152 2018-03-16 16:00    Van der Waals Heterostructures from Quantum Transport to Ultrafast Optoelectronics file
151 2018-03-16 14:30    산화물 다층박막에서의 다양한 물리현상 file
150 2018-02-12 15:00    The recent result of XMASS Experiment
149 2017-12-15 09:20    Workshop on Magnetism in Unconventional Superconductors 개최 file
148 2017-12-14 15:00    Exploring the Universe via GWs in the era of multi-messenger astronomy
147 2017-12-13 13:30    KAIST-KIAS Joint Workshop in Theoretical Sciences 개최 file
146 2017-11-28 16:00    Physics after the lab and the desk: Your work in PRL file